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Sunday July 10, 2011 

8:30 – 9:30! Registration

 Tutorial Session 1! ! Chair: John Skilling

9:30! – !10:30!Giuseppe Tenti! ! “Bayesian data analysis:  A gentle introduction”!

10:30!–!11:00! Break

11:00!– !12:00! Ariel Caticha! ! “The Design of Probability Theory”

12:00 – 1:30! Lunch 

 Tutorial Session 2! ! Chair: John Skilling

1:30! – !2:30! Adom Giffin! ! “MaxEnt: then and now”

2:30! – !3:00! Break

3:00! – !4:00! Philip Goyal! ! “Information Physics:  Towards a New Conception 
! ! ! ! ! of Physical Reality”

4:00! – !4:30! Break

4:30! – !5:30! Udo von Toussaint!! “Numerical Methods in Bayesian Inference”

 6:30 – 8:30!! ! Welcome Reception
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Monday July 11, 2011 

7:30 – 8:15! Registration

8:15 – 8:30! Welcome

 Session 1! ! Chair: Philip Goyal

8:30! – !9:30! Jos Uffink! “Entropy, Entanglement, and Utility”
! ! ! (Invited Speaker)

9:30! – !10:00 ! Kevin H. Knuth! “Quantification: from inference to physical laws” 

10:00! – !10:30! Keith A. Earle! “A Master Equation approach to the `3 + 1' Dirac
! ! ! ! equation”

10:30! – !11:00! Break

11:00! – !11:30! Fabio Mendes! “Bayesian inference in the numerical solution of
! ! ! ! Laplace's equation”

11:30! – !12:00! Udo von Toussaint! “Beyond Least Squares: Robust Data Analysis”!

12:00!–!1:30 ! Lunch

 Session 2! ! Chair: Carlo Cafaro

1:30! – !3:00 ! Gerald H. Pollack       “The Secret Life of Water: E = H2O”
! ! ! (Invited Speaker)

3:00! – !3:30 ! Break

3:30! – !4:00! Jan Dettmer! “Sequential trans-dimensional Monte Carlo for seabed
! ! ! ! parameter inference”

4:00! –! 4:30! M. Asim Mubeen! “Evidence-Based Filters for Signal Detection: Application 
! ! ! ! to Evoked Brain Responses”

4:30! – !5:00     Michael Betancourt! “Cruising the Simplex: Sampling the Dirichlet Distribution with 
! ! ! ! Hamiltonian Monte Carlo”

5:00    –   5:30! P. G. L. Porta Mana! “A critique of the Maximum Entropy Principle by one of its 
! ! ! ! supporters”
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Tuesday July 12, 2011 

8:00 – 8:30! Registration

 Session 3! ! Chair: Robert Niven

8:30! – !9:30! Ralph D. Lorenz! “Full steam ahead, probably”
! ! ! (invited speaker)

9:30       – 10:00! Jingfeng Wang! “An Application of the Maximum Entropy Production Principle 
! ! ! ! in Modeling Heat Fluxes over Land Surfaces” 

10:00! – !10:30! Benjamin L. Ruddell! “Relationships Between Information Production, Shannon Entropy, 
! ! ! ! Energy Fluxes, and Bounds of Variability in Land Surface Ecosystems”

10:30! – !11:00! Break!

11:00! – !12:00! Timothy E. Jupp! “MaxEnt and planetary climates: surely atmospheric dynamics 
! ! ! (invited speaker)! matter?”

12:00!– !2:00 ! Lunch

 Session 4! ! Chair: Adom Giffin

2:00! – !3:00 ! Robert K. Niven! “Application of MaxEnt to Steady-State Flow Systems (and 
! ! ! (invited speaker)! Extremum Entropy Production Principles)”

3:00! – !3:30 ! Deniz Gencaga! “Difficulties in estimating the information-theoretic quantities 
! ! ! ! from data: a survey paper”

3:30! – !4:00! Break!

4:00     –  4:30! Nabin K. Malakar! “Maximum Joint Entropy and Information-Based Collaboration 
! ! ! ! of Automated Learning Machines”

4:30    –   5:00! Julian L. Center, Jr.! “Calibrating and aligning a low-cost vision-inertial navigation
! ! ! ! system”

 6:00 – 10:00 ! Poster Session & Reception
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Wednesday July 13, 2011 

8:00 – 8:30! Registration

 Session 5! ! Chair: Keith Earle

8:30! – !9:30! Arieh Ben-Naïm! “Shannon's measure of Information and the thermodynamic
! ! ! (invited speaker)! Entropy”
! ! ! !
9:30     – 10:00     Antoine van de Ven! “Modeling the World by Minimizing Relative Entropy” 

10:00! – !10:30! Alexis A. Toda! “Unification of maximum entropy and Bayesian inference via 
! ! ! ! plausible reasoning”

10:30! – !11:00! Break!

11:00! – !11:30! Francesco Palmieri! “Consistence of sequence classification with entropic 
! ! ! ! priors”!

11:30! – !12:00 ! Kai Krajsek! “Bayesian Inference in Kernel Feature Space”

12:00– 2:00! Lunch

 Session 6! ! Chair: Edward Vrscay

2:00! – !2:30 ! Yannis Kalaidizis! “Maximum entropy approach for non-supervised 
! ! ! ! parameterization of intracellular vesicle tracking algorithm”

2:30! – !3:00 ! Mark Ebden! “Soft partitioning in networks via Bayesian Nonnegative Matrix 
! ! ! ! Factorisation”

3:00! – !3:30! Richard P. Mann! “Prawns and Probability:  Adventures in Learning Models for 
! ! ! ! Collective Animal Behaviour”

3:30    –   4:00     Break!

 4:00 – 5:00!! Panel Discussion (Chair: Adom Giffin)
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Thursday July 14, 2011 

8:00 ! – !8:30! Registration

 Session 7! ! Chair: Philip Goyal

8:30! –! 9:30! Robert W. Spekkens ! “Almost quantum theory: classical theories with a statistical 
! ! ! (invited speaker)! restriction”

9:30! –! 10:00! Marcel Reginatto! “Quantum theory from the geometry of evolving probabilities” 

10:00! – !10:30! Carlo Cafaro! “On a differential geometric viewpoint of Jaynes’ Maxent 
! ! ! ! method and its quantum extension”

10:30! – !11:00! Break!

11:00! – !11:30! Ariel Caticha! “Entropic dynamics and the quantum measurement
! ! ! ! problem”!

11:30! –! 12:00 ! Robin Blume-Kohout! “Likelihood-ratio confidence intervals for quantum states”

12:00!–!1:30! Lunch

 Session 8! ! Chair: Udo von Touissant

1:30! –! 2:30 ! Radford M. Neal! “New Monte Carlo Methods Based on Hamiltonian
! ! ! (invited speaker)! Dynamics”!

2:30    –! 3:30     John Skilling! “Computing Bayes in big spaces”
! ! ! (invited speaker)

 4:30!–!9:30 !! Banquet     
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Friday July 15, 2011 

8:00 – 8:30! Registration

 Session 9! ! Chair: Deniz Gencaga

8:30! – !9:00! Edward R. Vrscay! “Fractal-based measure approximation with entropy 
! ! ! ! maximization and sparsity constraints”

9:00     –  9:30! Chris Ferrie! “Minimax estimators for noisy coins” 

9:30! – !10:00! Marcelo S. Lauretto! “Estimation and model selection in Dirichlet regression”

10:00! – !10:30! Break!

10:30! – !11:00! Paul M. Goggans! “Inference-based design of FIR filters with sum of signed 
! ! ! ! power-of-two coefficients”!

11:00! – !11:30 ! Jonathan Botts! “Bayesian Inference for Acoustic Impedance Boundaries in 
! ! ! ! Room-Acoustic Finite Difference Time-Domain Modeling”

11:30! –! 12:00! Brian D. Ziebart! “Process-Conditioned Investing with Incomplete Information 
! ! ! ! using Maximum Causal Entropy”   

12:00– 2:00! Lunch

 2:00 – 3:00! ! Business Meeting
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Poster Session 
Tuesday July 12, 2011   6:00pm – 10:00pm

 Arthur H. Baraov!! “On the notion of fair games and Bernoulli's concept of moral
! ! ! ! expectation”

 Jingfeng Wang! ! “On Ignorance Priors and the Principle of Inference”

 Sean Alan Ali! ! “Relating dynamical complexity to quantum entanglement via 
! ! ! ! information geometry and maximum relative entropy
! ! ! ! methods”

 Carlo Cafaro! ! “An information geometric viewpoint of algorithms in quantum 
! ! ! ! computing”

 Adom Giffin! ! “Insights into the softening of chaotic statistical models by 
! ! ! ! quantum considerations”

 Veronica Nieves! ! “Bayesian Analysis of Scale-Invariant Processes”  

 Jian Deng! ! “Maximum partial entropy principle and partial probability-
! ! ! ! weighted moments”

 Noel van Erp! ! “Parsimonious priors for regression coefficients”

 Arthur H. Baraov!! “The aircraft carrier problem”

 Koki Kyo!! ! “Bayesian estimation of dynamic matching function for u-v
! ! ! ! analysis in Japan”
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 Subhadeep Mukhopadhyay! “From Data to Constraints”

 Asif Mehmood! ! “Application of Bayesian Non-Negative Matrix Factorization to 
! ! ! ! Seismic Footstep Signals Separation”

 Marcel Reginatto!! “Neutron spectrometry at high-energy accelerator facilities: a
! ! ! ! Bayesian approach using entropic priors”! ! !

 Nissim Kaufmann!! “A note on antidata”

 Barrie Stokes! ! “Maxent alternatives to Pearson family distributions” 

 Chris Granade! ! “Adaptive Hamiltonian estimation using Bayesian experimental 
! ! ! ! design”

 Do Kester! ! “A software package for nested sampling”

 Marcelo S. Lauretto! “The full Bayesian significance test for symmetry in contingency 
! ! ! ! tables”

 Marcelo S. Lauretto! “Reliability analysis in series systems: an empirical comparison
! ! ! ! between Bayesian and classical estimators”

 Sha Zhu! ! ! “A hierarchical Bayesian method for synthetic aperture radar
! ! ! ! image reconstruction”

 Michele Pappalardo! “Handling Uncertainty Using Game Theory”

 Ryszard P. Kostecki! “Information geometric foundations of quantum theory”
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 Ning Chu! ! “Super-resolution image from a sequence of low resolution
! ! ! ! images based on improved Gauss-Markov-Potts model”

 Renaldas Urniezius! “Iteration free vector orientation using maximum relative
! ! ! ! entropy with observational priors”

 Shahid Nawaz! ! “Momentum and the uncertainty relation in the entropic
! ! ! ! approach to quantum theory”

 Kevin H. Knuth! ! “From Cox to Emergent Geometry”

 Doriano-Boris Pougaza! “New copulas obtained by maximizing Tsallis or Renyi
! ! ! ! Entropies”

 Cameron J. Fackler ! “Porous Material Parameter Estimation: A Bayesian
! ! ! ! Approach”

  Adom Giffin! ! “The error in the two envelope paradox”

 Haley A. Maunu! ! “Maximum entropy production in Daisyworld models”

 Keith A. Earle! ! “Parameter Estimation of Magnetic Resonance Spectra via a
! ! ! ! Statistical Mechanics Approach”

 Mark Ebden! ! “Soft partitioning in networks via Bayesian Nonnegative Matrix
! ! ! ! Factorisation”
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BAYESIAN DATA ANALYSIS: A GENTLE

INTRODUCTION

G. Tenti
Department of Applied Mathematics University of Waterloo

Abstract

The analysis of experimental data is essential to the development of scientific the-
ories, but the type of reasoning used in formulating hypotheses and having them
substantiated by the data has been the subject of great controversies for over two
hundred years.

Using simple examples—such as coin-tossing—I shall illustrate the source of the
disagreements and give reasons why the Bayesian approach is superior to standard
(“orthodox”) statistical analysis. Time permitting, I shall also show how E.T.
Jaynes used Bayesian ideas to derive Fick’s law of diffusion.
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THE DESIGN OF PROBABILITY THEORY

Ariel Caticha
Department of Physics, University at Albany (SUNY)

(ariel@albany.edu)

Abstract

The problem of coping with uncertainty in the real world is central to all science.

As a result of the work by many people a fairly satisfactory solution has been

achievedalthough much controversy still remains. The solution involves, first, a

scheme that allows one to represent any provisional state of knowledge, and second,

a procedure that allows us to revise our beliefs as we acquire new information.

This tutorial is mostly concerned with the first stage—the design of probability

theory—as pioneered by Cox. About the second stage—the updating problem—our

discussion will be brief, we will only make some brief remarks on Bayes rule and its

limitations.

I will follow a very pragmatic approach. Probability theory is neither true nor

false; it is designed to be useful, to achieve a certain purpose, to work. Just as in

engineering, one is satisfied that a solution works when it performs according to

some desired “design specifications” or “design criteria”. In engineering there may

be many solutions that work fine—they perform the desired function, and in the

end, that is all we care about. What is remarkable about the Cox approach is that

the design specifications—consistency, universality—are totally restrictive. There

is a unique way to handle degrees of belief and this is probability theory.

I will address some of the criticisms that have been raised against the Cox

approach. Are these degrees of belief, or plausibility, or credibility, or even degrees

of implication? Is there a difference? Should we use a single real number to measure

a degree of belief? Can beliefs be compared? Are the Cox design criteria obvious?

Are there counter examples to Cox?

Rather than justifying Cox’s choices I demonstrate their robustness. I make a

different choice of design criteria and derive probability theory as the unique (up to

regraduations) consistent representation of the Boolean AND and OR operations.

Key Words: Probability theory, Bayesian Inference, Pragmatism
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Information Physics: Towards a New Conception of
Physical Reality

P. Goyal
Department of Physics, University at Albany (SUNY)

(pgoyal@albany.edu)

Abstract

The central tenet of information physics is that the concept of information is as
fundamental to developing an understanding of the physical universe as are the
classical concepts of space and time, matter and energy.

In this talk, I shall sketch the developments—in physics and elsewhere—that
have given rise to the field of information physics, and indicate some of the many
rather deep insights that ‘informational thinking’ has provided into the structure of
physical theory, in particular into the mathematical structure of quantum theory.
I shall also briefly sketch the emerging conception of reality (or ontology) to which
these developments seem to naturally lead.

Key Words: information, statistical physics, quantum theory
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Numerical Methods in Bayesian Inference

U. von Toussaint1

(1) Max-Planck-Institute for Plasmaphysics,
Boltzmannstrasse 2, 85748 Garching, Germany

May 31, 2011

Abstract

Bayesian inference is very simple from a conceptual point of view: Once the like-
lihood and prior distributions are specified Bayes’ theorem allows to derive the
posterior probability for every specified parameter vector. However, in most situa-
tions the posterior distribution is required primarily for the purpose of evaluating
expectation values of a function of interest f (θ) with respect to the posterior,

〈f (θ)〉 =

∫
dθ f (θ) p (θ|D, I) =

∫
dθ f (θ)

p∗ (θ)

Z
(1)

The normalization constant of the unnormalized distribution p∗ (θ) is given by

Z =

∫
dθ p∗ (θ) . (2)

These integrals over the parameter space are commonly high-dimensional and ana-
lytically intractable, except in very rare circumstances, so that typically neither the
expectation value nor the normalization constant are at hand - the latter the key
quantity for Bayesian model comparison. Also the marginalization of parameters
requires integration in often high-dimensional spaces. There are two different ways
to proceed. Either the integrant of Eq. (1) is approximated by a different, more
easily accessible function or the integral itself is approximated by numerical inte-
gration or by sampling (MCMC) techniques. In the tutorial the key concepts and
algorithms to evaluate these integrals are presented and their respective merits are
compared using real-world examples.
Key Words: Bayesian Data Analysis, Numerical Methods, Markov Chain Monte

Carlo
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ENTROPY, ENTANGLEMENT AND UTILITY

J. Uffink
University of Utrecht

Abstract

This talk explores a formal analogy between the study of entanglement in quantum
theory, entropy in classical thermodynamics, and utility in decision theory. Roughly
speaking, I will argue that in all three cases, the mathematical problem arises of
finding and characterizing those functions that respect a given pre-ordering relation,
subject to certain auxiliary conditions. Moreover, theorems have been obtained in
these three separate areas that might be applied to them in common. It is my
main purpose to draw attention to these, and argue how they might be useful in
thermodynamics and quantum theory.
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QUANTIFICATION:
FROM INFERENCE TO PHYSICAL LAWS

Kevin H. Knuth
Departments of Physics and Informatics

University at Albany (SUNY), Albany NY USA
(kknuth@albany.edu)

Abstract
Many are aware that Richard T. Cox’s contribution to the foundations of probability
theory centers on the realization that the absolute truth values of the Boolean alge-
bra of logical statements can be generalized to degrees of belief [1]. Ed Jaynes, who
was inspired by both Cox and Shannon realized that the connections between com-
munication theory and statistical mechanics did not lie in the equations themselves,
but rather the ideas that led to the equations [2, p. 4].

Here I will focus on those ideas [3, 4] by discussing the way in which the concept
of order is mathematically formalized using algebras, lattices and partially-ordered
sets and generalized through quantification. I will briefly describe how quantifying
a partially-ordered set of sequences of measurements leads to a derivation of the
Feynman formulation of quantum mechanics [5, 6], which is not only consistent
with, but dependent on traditional inference. In addition, I will describe how the
ordering of events leads to a derivation of special relativity, and more importantly
to a novel concept of space and time as emergent properties of a network of events
[7]. In conclusion, I will outline our current research which considers quantum
measurements as events and show how we are approaching a deep understanding of
relativistic quantum mechanics.

What is surprising is that the same ideas that led to both communication theory
and statistical mechanics, taken seriously, lead to quantum mechanics and relativity,
and maybe more.

References:
[1] R.T. Cox, Am. J. Physics 14, 113 (1946).
[2] E. T. Jaynes, Probability Theory in Science and Engineering, No. 4 in

Colloquium Lectures in Pure and Applied Science, Socony-Mobil Oil Co., 1956.
[3] K.H. Knuth, MaxEnt 2003, arXiv:physics/0403031v1 [physics.data-an]
[4] K.H. Knuth, MaxEnt 2009, arXiv:0909.3684v1 [math.GM].
[5] P. Goyal, K.H. Knuth, and J. Skilling. 2010. Phys. Rev. A 81, 022109,

arXiv:0907.0909 [quant-ph].
[6] P. Goyal, K.H. Knuth. 2011. Symmetry 3(2):171-206.
[7] K.H. Knuth, Bahreyni N. 2010. arXiv:1005.4172v2 [math-ph]

Key Words: algebra, lattice, order, physics, poset, quantum mechanics, relativity
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A Master Equation Approach to the ‘3 + 1’ Dirac
Equation

Keith A. Earle
Physics Department, University at Albany (SUNY)

1400 Washington Ave, Albany NY 12222
kearle@albany.edu, http://earlelab.rit.albany.edu

Abstract

A derivation of the Dirac equation in ‘3 + 1’ dimensions is presented based on a

master equation approach originally developed for the ‘1 + 1’ problem by McKeon

and Ord. The method of derivation presented here suggests a mechanism by which

the work of Knuth and Bahreyni on causal sets may be extended to a derivation

of the Dirac equation in the context of an inference problem. The relationship

of the approach described here to alternative formulations, such as the unitary

cellular automaton of Bialynicki-Birula and the Discrete Time Quantum Walk of

Strauch will also be discussed. The formalism developed here will be applied to

scattering from a potential step. The time-dependence of the Shannon entropy for

the free particle and potential scattering case can be computed via the Born rule.

Insights from these computations may be used to deepen understanding of quantum

phenomena.
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Bayesian inference in the numerical solution of
Laplace’s equation

Fbio Macdo Mendes1,2, Edson Alves da Costa Jnior1,3

(1) University of Braslia at Gama.
(2) fabiomacedomendes@gmail.com

(3) edsonalves@unb.br

Abstract

Inference is not unrelated to numerical analysis: given partial information about a
mathematical problem, one has to estimate the unknown ”true solution” and error
bars. Many methods of interpolation (least squares, Kriging, Tikhonov regulariza-
tion, etc) have a probabilistic interpretation. O’Hagan showed that quadratures
can also be constructed explicitly as a form of Bayesian inference (O’Hagan, A.,
BAYESIAN STATISTICS (1992) 4 , pp. 345-363) . In his framework, the inte-
grand is modeled after a Gaussian process. By conditioning the stochastic process
to the known values of the integrand in a finite set of points, can can build a reliable
estimate for the value of the integral. The present work applies a similar method
for the problem of solving Laplace’s equation inside a closed boundary. First, one
needs a Gaussian process that yields arbitrary harmonic functions. Secondly, the
boundaries (Dirichilet or Neumann conditions) are used to update these probabili-
ties and to estimate the solution in the whole domain. This procedure is similar to
the widely used Boundary Element Method, and it is possible to recover the later
as a special case. The language of Bayesian inference gives more flexibility on how
the boundary conditions and conservation laws can be handled. This flexibility can
be used to attain greater accuracy using a coarser discretization of the boundary.
This can open doors to more efficient implementations for solvers of homogeneous
parabolic equations. Key Words: Gaussian Processes, Numerical Analysis, Elliptic

Partial Differential Equations
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Beyond Least Squares: Robust Data Analysis

U. von Toussaint1, V. Dose1

(1) Max-Planck-Institute for Plasmaphysics,
Boltzmannstrasse 2, 85748 Garching, Germany

April 4, 2011

Abstract

We investigate in a Bayesian framework the performance of two alternative modifi-

cations of the 200 years old method of least squares. The first modification considers

arbitrary real positive exponents α instead of α = 2 in the distance measure. This

modification leads to estimates that are less outlier sensitive than traditional least

squares. Moreover, even when data are simulated with a Gauss random number

generator the optimum exponent α may well deviate from α = 2. The second mod-

ification consists of abandoning the assumption that data uncertainties entering the

distance measure are exact. We replace this assumption by assuming that the ex-

perimentally determined uncertainties si are point estimates of the unknown true

uncertainties σi. The remarkable result of this modification is a likelihood which is,

unlike traditional least squares, very robust against outliers in case of inconsistent

data, but approaches least squares results for consistent data. These properties

render data selection by reason of their numerical value unnecessary. Two physics

examples of the approach will be discussed.

Key Words: Bayesian Data Analysis, Robust Data Analysis, Least square estima-

tion
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The Secret Life of Water: E = H2O

Gerald H. Pollack, PhD

University of Washington, Seattle

(ghp@u.washington.edu, http://faculty.washington.edu/ghp/)

Abstract

School children learn that water has three phases: solid, liquid and vapor. But we

have recently uncovered what appears to be a fourth phase. This phase occurs next

to water-loving (hydrophilic) surfaces. It is surprisingly extensive, projecting out

from the surface by up to millions of molecular layers.

Of particular significance is the observation that this fourth phase is charged;

and, the water just beyond is oppositely charged, creating a battery that can pro-

duce current. We found that light recharges this battery. Thus, water can receive

and process electromagnetic energy drawn from the environment much like plants.

The absorbed light energy can then be exploited for performing work, including

electrical and mechanical work. Recent experiments confirm the reality of such

energy conversion.

The energy-conversion framework implied above seems rich with implication.

Not only does it provide an understanding of how water processes solar and other

energies, but also it may provide a foundation for simpler understanding natural

phenomena ranging from weather and green energy all the way to biological issues

such as the origin of life, transport, and osmosis.

The lecture will present evidence for the presence of this novel phase of water, and

will consider the potentially broad implications of this phase for physics, chemistry

and biology, as well as some practical applications for engineering (all in one hour!).
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SEQUENTIAL TRANS-DIMENSIONAL MONTE

CARLO FOR SEABED PARAMETER INFERENCE

J. Dettmer
1
, S.E. Dosso

1
, C.W. Holland

2

(1) University of Victoria, Victoria BC, Canada

(2) The Pennsylvania State University, State College PA, USA

e-mail: jand@uvic.ca

Abstract

This paper develops a sequential Monte Carlo algorithm for seabed parameter es-

timation along tracks in rapidly varying environments. Observations along tracks

are in terms of seabed acoustic reflection coefficients as a function of frequency and

grazing angle, which are measured using a ship-towed sound source and hydrophone

array. Markov chain Monte Carlo methods are applied in combination with sequen-

tial techniques (particle filters) to carry out parameter inference for consecutive

data sets acquired along a track. The environment is parametrized as a stack of

sediment layers, each layer being described by compressional wave velocity, density,

and attenuation. Changes in model parametrization along the track (e.g., number of

sediment layers) are accounted for with trans-dimensional partition modelling which

intrinsically determines the amount of structure supported by the data information

content. Challenging issues of rapid environmental change between consecutive

data sets and high information content (peaked likelihood) are addressed by bridg-

ing distributions implemented using annealed importance sampling. This provides

an efficient method to locate high-likelihood regions for new data which are distant

and/or disjoint from previous high-likelihood regions. The algorithm is applied to

simulated reflection-coefficient data along a track, in which the environment varies

rapidly in terms of the number of layers, layer thicknesses, and geoacoustic parame-

ters within layers. In addition, the seabed contains a geologic fault where all layers

are offset abruptly, and an erosional channel. Finally, the inversion is applied to

data collected on the Malta Plateau, Mediterranean Sea, using a towed chirp-sonar

source and a hydrophone array close to the seabed.
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Evidence-Based Filters for Signal
Detection:Application to Evoked Brain Responses

M. Asim Mubeen
1
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(3) Autonomous Exploration Inc., Andover MA

Abstract

Template-based signal detection most often relies on computing a correlation, or
a dot product, between an incoming data stream and a signal template. Such a
correlation results in an ongoing estimate of the magnitude of the signal in the data
stream. However, it does not directly indicate the presence or absence of the signal.
The problem is really one of model-testing, and the relevant quantity is the Bayesian
evidence (marginal likelihood) of the signal model. Given a signal template and an
ongoing data stream, we have developed an evidence-based filter that computes the
Bayesian evidence that a signal is present in the data.

We demonstrate this algorithm by applying it to brain-machine interface (BMI)
data obtained by recording human brain electrical activity, or electroencephalogra-
phy (EEG). A very popular and effective paradigm in EEG-based BMI is based on
the detection of what is called the P300 evoked brain response which is generated
in response to particular sensory stimuli. The goal is to detect the presence of a
P300 signal in ongoing EEG activity as accurately and as fast as possible. Our algo-
rithm uses a subject-specific P300 template to compute the Bayesian evidence that
a sliding window of EEG data contains the signal. The efficacy of this algorithm is
demonstrated by comparing receiver operating characteristic (ROC) curves of the
evidence-based filter to the usual correlation method. Our results show a signifi-
cant improvement in single-trial P300 detection. The evidence-based filter promises
to improve the accuracy and speed of the detection of evoked brain responses in
BMI applications as well the detection of template signals in more general signal
processing applications.

Monday Afternoon



Monday Afternoon



Cruising the Simplex:

Sampling the Dirichlet Distribution

With Hamiltonian Monte Carlo

Michael Betancourt
Massachusetts Institute of Technology

betan@mit.edu

Abstract

The allocation of a conserved quantity is a common feature of many problems in
modern statistics, ranging from categorical systems to mixture models and non-
parametric estimation. Given its appropriate support, the Dirichlet distribution is
a typical component of these analyses, but the very support that makes it useful
also makes it difficult to incorporate into compound models. I present a series of
transformations that reshapes the canonical Dirichlet distribution to admit efficient
Markov Chain Monte Carlo sampling and demonstrate the utility of the sampling
with applications common to many physics analyses.

Key Words: Dirichlet Distribution, Markov Chain Monte Carlo
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A CRITIQUE OF THE MAXIMUM-ENTROPY
PRINCIPLE BY ONE OF ITS SUPPORTERS

P. G. L. Porta Mana
Perimeter Institute for Theoretical Physics, Waterloo

Abstract

What is the relationship between Bayesian theory and the principle of maximum
entropy? When does the principle give unreasonable or wrong results? When is it
appropriate to use the rule ‘expectation = average’? Can Bayesian theory give the
same answers as the principle, and better answers when those of the principle are
unreasonable?

A supporter of the principle tries to answer these questions by comparing, in
a couple of very simple dice-throwing problems, the numerical results given by
Bayesian theory and by the principle. And in so doing, he almost becomes an
apostate.
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FULL STEAM AHEAD, PROBABLY

R. D. Lorenz
1

(1) JHU Applied Physics Laboratory, Laurel, MD 20723, USA

(ralph.lorenz@jhuapl.edu. http://www.lpl.arizona.edu/ rlorenz)

Abstract

Could the Earth’s climate state be selected by thermodynamics [1] and infor-
mation theory? In particular, there is no a priori reason that the equator to pole
temperature gradient, which drives and is determined by the poleward heat trans-
port in the oceans and atmosphere, should be the value we observe. However, it
appears to be at a value where the production of thermodynamic entropy by that
heat flow is maximized (more or less equivalent to maximizing its potential work
output.) This Maximum Entropy Production (MEP) state appears to hold on Ti-
tan and, to some extent, Mars, even though their climates are very different in
character[2,3].

One rationale is that the greatest number of possible combinations of modes
of heat transport (Hadley circulation, eddies, ocean currents, etc.) at steady state
will exist where that dissipation is maximized. In other words, that the MEP state
is most probable, subject to the constraints that are applied to the system. Chief
among these constraints are the pressure (or column mass) of the atmosphere, and
the planetary rotation rate. It is recognition of these constraints on MEP that may
allow the reconciliation of MEP approaches with a more conventional dynamical
meteorological perspective. One obvious application of the principle may be to
exoplanets, for which there are generally very little data to constrain more elaborate
models.

This talk will review the MEP idea and related topics in planetary science,
including the size spectrum of dust devils observed on Mars and Earth. This size
distribution may be described by an exponential (suggested on MaxEnt grounds [4]),
or perhaps a power law[5], which may arise from self-organized criticality which may
in turn be associated with MEP[6].

References:
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[2] R. D. Lorenz et al. Geophys. Res. Lett. 28, 415 (2001).
[3] R. D. Lorenz et al. Science. 299, 837 (2003).
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[5] R. D. Lorenz. Icarus 203, 683 (2009).
[6] R. Dewar, J. Phys. A. 36, 631 (2003).
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Relationships Between Information Production, Shannon Entropy, Energy Fluxes, and Bounds of 
Variability in Land Surface Ecosystems 

 
Benjamin L. Ruddell1 

 
(1) Arizona State University, Tempe, AZ 

 
(bruddell@asu.edu, 480-727-5123) 

 
Recent advances in applications of information theory to ecosystem flux data have highlighted 
the connection between ecosystem productivity, phenology, and information production in a 
wide range of land surface vegetated ecosystems. We will present a series of preliminary 
findings expanding on the relationship between these established patterns, adding insights into 
their origins in the fluxes of energy and the extreme bounds of variability of these systems. The 
findings have possible applications in the identification of emergent patterns that can be used to 
predict the adaptation of land surface ecosystems, and other complex systems, under changing 
climate and forcing dynamics. 
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MaxEnt and planetary climates: surely atmospheric
dynamics matter?

T. E. Jupp1

(1) Mathematics Research Institute, University of Exeter, Exeter, UK
(t.e.jupp@exeter.ac.uk)

Abstract

Equator–to–pole heat transport in terrestrial planets results from complex atmo-
spheric motions. Nonetheless, the macroscopic features of this transport can often
be predicted simply by applying energy conservation and appealing to the MaxEnt
formalism (which in this case corresponds to maximising the rate of thermodynamic
entropy production – MEP). The apparent irrelevance of fluid dynamics is worrying
- especially to fluid dynamicists. In this talk I shall present some recent results
(Jupp & Cox, 2010) which suggest that dynamical constraints do not affect Max-
Ent results for Earth, Mars, Venus and Titan and are, in this sense, irrelevant. For
planets with different properties, however, it is shown that dynamical constraints
would indeed affect the MaxEnt state of the atmosphere.
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Figure 1: Simple model for equator–to–pole heat transport. (a) A surface wind U blows
from pole to equator through an atmosphere of thickness H. (b) Schematic representation
of the model. Dashed arrows – radiative energy fluxes, solid arrows – atmospheric energy
fluxes, dotted arrows – atmospheric circulation.
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Application of MaxEnt to Steady-State Flow Systems
(and Extremum Entropy Production Principles)

Robert K. Niven1,2
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Abstract
Recently, the author gave a MaxEnt-based analysis of steady-state flow systems,

using an entropy defined on the set of instantaneous fluxes through an infinitesimal

fluid element [1,2]. The formulation is analogous to Gibbs’ formulation of equilib-

rium thermodynamics [3], which expresses the effect of changes in entropy within

and outside a system, but is here applied to the steady state of a non-equilibrium

flow system. The analysis yields a potential function (negative Massieu function,

analogous to a free energy) to be minimised; this in turn can be approximated by

a maximum or minimum entropy production (MaxEP or MinEP) principle in dif-

ferent circumstances. In this seminar, a generic version of the derivation is first

provided, encompassing three seemingly disparate formulations of equilibrium ther-

modynamics [3], local steady-state flow [1-2] and global steady-state flow [4-5]. The

mathematical structure of the analysis, in consequence of Jaynes’ framework [6],

is first examined, leading into a discussion of the possibility and implications of

a scale invariance condition for the application of MaxEnt to flow systems. The

consequences of the analysis for several systems are also considered, including (i)

the transition between laminar and turbulent flow in a pipe, and (ii) the modelling

of planetary climate systems, including solar and extrasolar planets.
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DIFFICULTIES IN ESTIMATING THE
INFORMATION-THEORETIC QUANTITIES FROM DATA:

A SURVEY PAPER

Deniz Gencaga1, William B. Rossow1, Kevin H. Knuth2

(1) NOAA-CREST, The City College of New York, NY, USA.
(2) Departments of Physics and Informatics, University at Albany, NY, USA.

Abstract

To quantify the amount of information about a variable, to quantify the amount of in-
formation shared between two variables, or even to quantify the amount of information
shared along with its direction between coupled variables in a dynamical system, we uti-
lize information-theoretic quantities like entropy, mutual information and transfer entropy,
respectively. Although the literature is so rich in methods on estimating these quantities
from observational data, to the best of our knowledge these quantities can only be estimated
with certain bias and variance, creating a huge difficulty for data users in their fields. Here,
we demonstrate main techniques and fill a major gap in the literature by presenting these
methods used in very diverse fields from biomedicine [1] to health monitoring in engineering
systems [2]. First, we present fixed-width bin histogram based methods [3] and our Bayesian
version along with error-bars. Later we demonstrate variable-width bin histogram based
methods [4] for mutual information and transfer entropy estimations. Finally, we describe
how these quantities are estimated using kernel density estimation techniques [5]. In addition
to these, we also demonstrate, how addition and subtraction operations involved in the esti-
mation of the computation of information-theoretical quantities, such as mutual information
and transfer entropy, bring external bias to them, and what kind of corrections can be done
to avoid these. In conclusion, we believe that this survey will fill a gap in the literature by
the demonstration of the most common methods in the estimation of information-theoretic
quantities in a single paper.
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CALIBRATING AND ALIGNING A LOW-COST

VISION-INERTIAL NAVIGATION SYSTEM

Julian L. Center, Jr.1

(1) Autonomous Exploration Inc.
AutonomousExploration.com, jcenter@ieee.org

Abstract

The automotive and home gaming industries have driven the cost of Micro Elec-
tro Mechanical System (MEMS) accelerometers and gyros to just a few dollars.
The personal computer and cell phone industries have driven the cost of relatively
high-resolution camera chips to similarly low levels. These developments make it
attractive to consider the development of a low-cost robot navigation system using
a combination of vision and inertial sensors. Fortunately, the error characteristics of
vision and inertial sensors are complementary. MEMS gyros and accelerometers can
track high-speed motions, but suffer from long-term drifts that make inertial nav-
igation using only these sensors impractical. Using Bayesian estimation methods,
vision information from a stereo camera pair can be used to correct these errors,
and produce an accurate navigation system that can operate indoors or in other
areas where GPS or other navigation aids are unavailable [1].

To produce an accurate navigation system, we must calibrate the instruments to
compensate for stable errors and develop probability models for varying errors. For
example, an Inertial Measurement Unit (IMU), consisting of three-axis accelerom-
eters and three-axis gyros, may have misalignments among the instruments that
vary from unit to unit, but do not change with time. MEMS inertial components
also exhibit biases that may be different every time the instrument is powered up,
but constant during a run. MEMS gyros, in particular, are sensitive to tempera-
ture variations. Furthermore, all MEMS components exhibit relatively high flicker
noise (pink noise). Cameras exhibit low levels of random noise, but also have image
distortions due to imperfect optics that vary from camera to camera but are time
invariant. Furthermore, to combine camera and IMU information, we must also
know the misalignments between the cameras and the IMU coordinate frame.

In this paper, we present a variety of controlled tests and Bayesian estimation
methods that can be used to calibrate and characterize both MEMS IMUs and
stereo camera pairs. We also present a method for correcting for misalignments
between the IMU and the cameras.

References:
[1] J. L. Center and K. H. Knuth ”Bayesian Visual Odometry”, MaxEnt 2010.
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Abstract 

We start with a clear distinction between Shannon’s Measure of Information and the 

Thermodynamic Entropy. The first is defined on any distribution, and therefore it is a 

very general concept. On the other hand Entropy is defined on a very special set of 

distributions. Next we show that the Shannon measure of Information (SMI) provides a 

solid and quantitative basis for the interpretation of the thermodynamic entropy.  For an 

ideal gas the entropy measures the uncertainty in the location and momentum of a 

particle, as well as two corrections due to the uncertainty principle and the 

indistinguishability of the particles 
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Modeling the World by Minimizing Relative Entropy

Antoine van de Ven1,2, Ben A.M. Schouten1,2

(1) Eindhoven University of Technology
(2) Fontys University of Applied Sciences

Abstract

Relative entropy and the principle of minimum relative entropy are proposed
as fundamental concepts that can be used for implementing intelligent agents that
build a model of the world.

An equation is derived that describes how such an agent builds an internal model
of the world by minimizing relative entropy.

Let w represent the world that the agent wants to model, and let mt represent
the beliefs and model of the world by the agent at time t. Assuming that the agent
learns about the world by minimum belief updating we show that the following
formula will describe the change of the internal model through time

KLD (w||mt) = KLD (w||m0) −
t∑

i=1

KLD (mi||mi−1)

where KLD stands for the Kullback-Leibler divergence and KLD (w||m) can be
interpreted as the difference between the world, represented by w and the internal
model of the agent, given by m.

With this equation we show that the agent continually improves its model of the
world. A main advantage of this equation and the derivation is that we use it to
clarify, interpret and show the relations between several seemingly different concepts,
interpretations, theorems and approaches from probability theory and information
theory. This includes minimum belief updating and inference by minimizing relative
entropy, the difference between probability distributions and quantifing (Bayesian)
surprise, learning progress, learning rate and curiosity.

References:
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Proceedings of the Ninth International Conference on Epigenetic Robotics. Lund
University Cognitive Studies, 145, 2009.
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principle for AGI, Proceedings of the Third Conference on Artificial General Intelli-
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Unification of Maximum Entropy and Bayesian
Inference via Plausible Reasoning

Alexis Akira Toda1
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Abstract
This paper modifies Jaynes’s axioms of plausible reasoning and derives the minimum
relative entropy principle as well as Bayes’s rule from first principles. The new ax-
ioms, which I call the Optimum Information Principle, can be split into two parts:
information gain (continuity and monotonicity, path independence, independence
from choice of unit, zero information gain for not updating) and plausible reasoning
(taking into account all information, Aristotelian logic, maximum conservatism).
The Optimum Information Principle is applicable whenever the decision maker is
given the data and the relevant background information. Given that the maxi-
mum entropy principle and Bayesian inference are useful methods, the Optimum
Information Principle is at least as useful.
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CONSISTENCY OF SEQUENCE
CLASSIFICATION WITH ENTROPIC PRIORS

Francesco A. N. Palmieri, Domenico Ciuonzo
SUN - Seconda Universitá di Napoli - ITALY

francesco.palmieri@unina2.it; domenico.ciuonzo@unina2.it

Abstract

Entropic priors, proposed mainly within the context of theoretical physics and
for continuos parameter spaces [1-4], represent a very promising approach to ”ob-
jective” prior determination when such information is not available. Our focus in on
the application of the entropic prior idea to Bayesian inference with discrete classes
in the context signal processing problems [5-6]. Unfortunately, it is well known
that entropic priors, when applied to sequences, may lead to eccessive spreading
of the entropy as the number of samples grows. This effect is evident in repeated
experiments [2] with priors becoming progressively concentrated on the class that
corresponds to the largest conditional entropy. This has been recognized as a main
limitation of entropic priors, even if domain-specific containments of prior entropy
have been proposed [2]. In this paper we show that the spreading of the entropy
may be tolerated if the posterior probabilities remain consistent. A first contri-
bution of this work is the derivation of a condition for posterior consistency. The
inequality, derived using the Asymptotic Equiripartition Property (AEP), is based
on conditional entropies and KL-divergences. Essentially, unless the likelihoods are
sufficiently separated (in the KL sense), entropic priors can lead to convergence to
the wrong class as the sample set grows. Furthermore, we show that entropic priors
can be modified to force posterior consistency by adding a constraint to joint entropy
maximization. The problem is solved applying the standard Karush-Kuhn-Tucker
method and an algorithm for coefficient determination is proposed. Simulations on
the application of entropic priors to some stochastic sequences are included.
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Bayesian Inference in Kernel Feature Space

Kai Krajsek and Hanno Scharr

Forschungszentrum Jülich GmbH, IBG-2

Abstract

We present a framework for Bayesian estimating in kernel feature space with im-
plicit statistical inference in a high or even infinite dimensional feature space. Kernel
based methods have a long tradition in statistical science and since its first steps in
the midst of the last century (Schoenberg, 1942) numerous variants have been pro-
posed including kernel density estimation (Parzen, 1963), mean shift (Fukunaga and
Hostetler, 1975), spline models (Wahba, 1990), channel smoothing (Felsberg et al.,
2006), support vector machines (Cortes and Vapnik, 1995), kernel PCA (Schölkopf
et al., 1996) and many others. Bayesian kernel based methods like Gaussian process
regression (Neal, 1997) or Bayesian variants of support vector machines (Tipping,
2001) learn a function from an input to an output space. By virtue of the represen-
ter theorem (Kimeldorf and Wahba, 1971) this function is given by a finite linear
combination of kernels and after learning predictions are then obtained by inserting
input data into the kernels. Our Bayesian approach differs from these Bayesian
approaches in that we implicitly perform statistical inference in a high (infinite)
dimensional feature space. This space is related, like in kernel PCA, by a nonlin-
ear map to the input space which consists of all entities of interests. Inference is
performed by means of a Gaussian model in the feature space transforming into a
non Gaussian posterior pdf in the input space. Due to the kernel trick only scalar
products of elements in the input space need to be computed. We present several
experiments demonstrating the merit of our approach. E.g. the Figure below il-
lustrates the behavior of our approach (solid arrow) and the kernel PCA (dashed
arrow) with respect to a 2D classification problem. Training data consists of three
noisy sources and test data of noise data from the lower left source. The first sample
is wrongly classified by both methods. Due to updating of the posterior pdf (shown
by its contour lines) sample ’4’, ’5’ (and later samples) are correctly classified by
our approach whereas kernel PCA fails.
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Soft partitioning in networks via

Bayesian Nonnegative Matrix Factorization

I. Psorakis
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(1) Department of Engineering Science, University of Oxford
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(mebden@robots.ox.ac.uk)

Abstract

In this work we present an approach to community detection that utilizes a Bayesian non-

negative matrix factorization model to extract overlapping modules from a network.
1

The

scheme has the advantage of soft-partitioning solutions, assignment of node participation

scores to modules, and an intuitive foundation. We present the performance of the method

against benchmark problems and compare it to other algorithms for community detection.

K N

hkj

wik

βk

a

b

vij

Above is our assumed generative graphical model. The observed variable vij denotes the

nonnegative count of interactions between two individuals i, j in a weighted undirected

network with adjacency matrix V ∈ RN×N
+ , which we factorize as V = WH. In the

community detection context, we assume that there are a number K of ‘hidden’ classes of

nodes in the network that affect vij . Thus we can define allocations of nodes to communities

as latent (unobserved) variables that allow us to explain the increased interaction density in

certain regions of the network: the more two individuals interact, the more likely they are

to belong to the same communities, and vice versa. The components W and H have scale

hyperparameters βk, and fixed hyper-hyperparameters a, b.
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Prawns and Probability: Adventures in Learning
Models for Collective Animal Behaviour
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Abstract

The complex and highly dynamic motion of large animal groups are among the most

impressive of natural phenomena. Simulation studies of collective animal behaviour

models have repeatedly demonstrated that the much of the large-scale dynamics of

such groups can be reproduced from simple local interactions between neighbours

within a flock, school, or swarm. The success of such models in producing apparently

realistic behaviour, the proliferation of candidate interaction rules and the advent

of high-quality tracking data naturally suggests the introduction of rigorous model

selection.

We find that large-scale dynamics are insufficient to distinguish between many

competing models. Fine-scale recordings of animal movements can be shown to

overcome this problem in principle. However, as we show, current models are in-

sufficient to capture the interactions and decisions of real animals, particularly due

to the Markovian assumption of simulation studies and the highly structured para-

metric form of such models.

The complexity of real animals thus poses a strong modelling challenge. We

demonstrate that classic models fail to accurately capture the fine-scale interactions

between animals and explore how these limitations may be overcome through the

inclusion of non-Markovian memory effects, changes to experimental design, and

the appropriate use of non-parametric modelling to determine spatial and temporal

variables of interest.

Key Words: Animal, Collective Behaviour, Prawns, Swarm
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ALMOST QUANTUM THEORY: CLASSICAL
THEORIES WITH A STATISTICAL

RESTRICTION

Robert W. Spekkens
Perimeter Institute for Theoretical Physics, Waterloo, Canada

Abstract

It is common to assert that the discovery of quantum theory overthrew our classical
conception of nature. But what, precisely, was overthrown? In this talk, I demon-
strate that a large part of quantum theory can be obtained from a single innovation
relative to classical theories, namely, that there is a fundamental restriction on the
sorts of statistical distributions over classical states that can be prepared. For both
discrete and continuous-variable systems, one can formalize such a restriction using
a classical version of complementarity (variables which do not commute accord-
ing to the Poisson bracket cannot be jointly known) or of Heisenberg’s uncertainty
principle (products of variances in such variables are non-vanishing) together with
a principle of entropy maximization. The toy theories that result from imposing
this restriction are found to have a rich structure closely paralleling that of quan-
tum theory and containing analogues of a wide variety of quantum phenomena such
as collapse, coherent superposition, entanglement, interference, teleportation, no-
cloning, and many others. The diversity and quality of these analogies provides
compelling evidence for the view that quantum states are not states of reality – as
many interpretations assume – but rather states of incomplete knowledge. I will
also discuss the quantum phenomena that are not captured by this principle. Many
on this list are found to be instances of a single phenomenon, called contextuality,
which I will explain briefly. I will end with a few speculations on what concep-
tual innovations might underlie the latter set and what might be the origin of the
statistical restriction.
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QUANTUM THEORY FROM THE GEOMETRY
OF EVOLVING PROBABILITIES

Marcel Reginatto1, Michael J. W. Hall2

(1) Physikalisch-Technische Bundesanstalt,
Bundesallee 100, 38116 Braunschweig, Germany

(2) Theoretical Physics, IAS, Australian National University,
Canberra ACT 0200, Australia

Abstract
Our starting point is the space of probabilities P (x), where the x are coordi-

nates of an n-dimensional configuration space. The action of the translation group,
P (x) → P (x− θ), induces a natural Riemannian metric in the space of parameters
θ, the Fisher-Rao metric of information geometry, as well as a metric in the space
of the probability densities on configuration space.

Our next step is to set the probabilities in motion. To describe the dynamics of P ,
we enlarge the space and introduce a new field S which is canonically conjugate to P
and a symplectic structure; this allows us to define Poisson brackets and Hamiltonian
equations of motion. This leads to the theory of ensembles on configuration space
(ECS), in which the observables are functionals of P and S which satisfy certain
restrictions (see Ref. [1] for a discussion of the ECS formalism in the context of
classical, quantum and mixed classical-quantum systems).

We consider the following question: Is it possible to enlarge the metric structure
to define a geometry over the full space of the P and S? This is indeed possible, and
the geometry that results is one that has both a metric and a symplectic form. To
ensure consistency between metric and symplectic structures, we need to introduce
a Kähler structure; i.e., a geometry that includes symplectic, metric and complex
structures. The Kähler structure imposes a strong restriction on the possible geome-
tries. We show that the simplest geometry that results is a flat Kähler space, and
point to assumptions that select this geometry from all other possible geometries.

One remarkable feature of this construction is that the canonical complex coor-
dinates Z of this Kähler geometry are precisely the wave functions Z =

√
PeiS of

quantum mechanics. Furthermore, although we start with a real space, a complex
structure is introduced in a natural way. We show that the the kinetic energy ob-
servable of quantum mechanics, and hence the Hamiltonian of a free particle, can
be derived from the metric in a natural way using geometrical arguments. Finally,
it is possible to associate a complex Hilbert space with this Kähler space, and this
Hilbert space is the standard one of the quantum theory.
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MAXENT METHOD AND ITS QUANTUM EXTENSION 
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Abstract 
 
It is known that geometric concepts can be introduced in probability theory by defining an inner 
product between two random variables as the expectation of the product of these variables once a 
probability distribution has been fixed [L. L. Campbell, “The Relation Between Information Theory 
and the Differential Geometry Approach to Statistics”, Inform. Sci. 35, 199 (1985)]. Then, 
considering the variation of the probability distribution (either directly or through changing 
parameters on which the distribution may depend) leads to the appearance of differential geometric 
ideas within probability calculus. 
 
Following the above-mentioned work of Campbell, we present a classical differential geometric 
viewpoint of Jaynes’ MaxEnt method. Furthermore, inspired by Braunstein [S. L. Braunstein, 
“Geometry of quantum inference”, Phys. Lett. A219, 169 (1996)], we attempt to construct, in an 
explicit manner, a suitable differential geometric framework for quantum inference by means of 
Jaynes' MaxEnt quantum formalism. 
 
Finally, having emphasized some criticisms to Jaynes’ quantum MaxEnt approach, we point out 
additional conceptual problems and computational limitations of this differential geometric 
extension. 
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ENTROPIC DYNAMICS AND THE QUANTUM
MEASUREMENT PROBLEM
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Abstract

Since its inception, perhaps the most stubborn objection to quantum mechanics has

been the measurement problem. In quantum mechanics, the wave function evolves

continuously and deterministically according to the Schrödinger equation. Upon

measurement, however, the wave function is said to ‘collapse’ into an eigenstate

of the measurement device. It is only at this interface between the microscopic

quantum world and the macroscopic classical world of the measuring device that

the probabilistic nature of the wave function is made apparent.

The abrupt, probabilistic change in the wave function upon measurement stands

in stark contrast to the evolution described by Schrödinger’s equation. This appar-

ent dichotomy has led to many proposed alterations and interpretations of quantum

mechanics and even numerous alternative quantum theories. One such theory, built

from principles of information, is entropic quantum dynamics.

In this paper, we examine the measurement problem from the perspective of

entropic dynamics. We find that there are not two rules to describe the evolution of

the wave function (one given by the Schrödinger equation and one for measurement);

there is just one – inference. Specifically, we show that the method of maximum

entropy leads to the Schrödinger equation when the only information relevant is

that time has passed. When information of a different kind is available, the wave

function is again updated with the method of maximum entropy. This kind of

updating is possible in entropic dynamics because the phase of the wave function is

defined purely in terms of probabilities.

The Born rule for position measurements is built into entropic dynamics as

position is the only observable. For other types of measurements, Born’s rule need

not be postulated but can be derived as a convenient method for predicting the

position of a quantum system after interacting with a measurement device.
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LIKELIHOOD-RATIO CONFIDENCE INTERVALS
FOR QUANTUM STATES

R. Blume-Kohout1
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Abstract

Estimation of quantum states – a.k.a. density matrices – is an essential compo-

nent of experimental quantum information science. Nearly all work to date has

focused on point estimators, but they cannot support rigorous probabilistic state-

ments about the state – which are critical for the design of fault-tolerant quantum

hardware [1]. Confidence region estimators (CREs) provide the necessary guaran-

tee. I demonstrate how to construct rigorous and near-optimal CREs for quantum

states, at any desired confidence level. First, I show that likelihood-ratio confi-

dence regions (like the Feldman-Cousins construction [2] used in particle physics)

are in fact minimum-volume CREs. I modify the canonical likelihood-ratio con-

struction, replacing the parameter-dependent loglikelihood threshold with a uni-

form (parameter-independent) threshold. The resulting CRE improves on Feldman-

Cousins in several ways: it respects the likelihood principle, it is much easier to cal-

culate, and it removes most of the objectionable background-noise-dependence in

Feldman-Cousins. Finally, I calculate the uniform threshold analytically by tightly

lower-bounding the distribution of the loglikelihood ratio statistic for multinomial

and Poisson count data. The end result is a simple and near-optimal prescription

for assigning rigorously reliable confidence regions for quantum states, based on any

form of tomographic data. Time permitting, I will discuss possible improvements

to this result.
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New Monte Carlo Methods Based on Hamiltonian

Dynamics

Radford M. Neal
University of Toronto

(radford@utstat.toronto.edu)

Abstract

Hamiltonian dynamics has been used to sample complex distributions for almost
as long as the Metropolis algorithm has. Only from the 1980s, however, with the
development of the HMC algorithm, has it been applied to distributions other than
systems of molecules, such as in my work on Bayesian neural networks. The big ad-
vantages of HMC are its suppression of random walk behaviour, which can greatly
speed exploration of the state space, and its superior scaling with dimensionality.
After reviewing HMC, I will introduce two new Monte Carlo methods based on
Hamiltonian dynamics. In “billiard HMC”, the quadratic kinetic energy used in
standard HMC is replaced by a piecewise-constant kinetic energy function. Hamil-
tonian dynamics can then be simulated exactly by solving equations for the times
when the trajectory “bounces” off the locations of the discontinuities in the kinetic
energy. With exact dynamics, trajectories are never rejected. Furthermore, one can
define the kinetic energy in a way that leads to only one state variable changing at
a time, which for many distributions allows fast methods for incremental computa-
tion to be used. Standard HMC can have difficulty handling multiple modes, and
lacks a way of estimating the normalizing constant for the distribution sampled.
My “Hamiltonian importance sampling” method aims to address these problems,
by exploiting the volume preservation property of Hamiltonian dynamics to create
an importance sampling distribution that can closely approximate a complex distri-
bution while still having an easily-computable probability density function, which
is necessary for re-weighting the sample points. Several tricks are required to get
this idea to work. In particular, for applications to Bayesian inference, it needs to
be combined with “slice sampling” for the prior. Athough this methods works very
naturally with Hamiltonian dynamics, it can also be adapted for use with other
MCMC methods, such as simple Metropolis updates, and so provides a general
alternative to methods such as simulated tempering and multicanonical sampling.
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FRACTAL-BASED MEASURE APPROXIMATION

WITH ENTROPY MAXIMIZATION AND

SPARSITY CONSTRAINTS

D. La Torre1, E.R. Vrscay2

(1) Department of Economics
University of Milan, Milan, Italy

(2) Department of Applied Mathematics
University of Waterloo, Waterloo, Ontario, Canada

Abstract

Let (X, d) denote a complete metric space. An N -map iterated function system

with probabilities (IFSP) is a set of N contraction maps wi : X → X with associ-
ated probabilities pi. The IFSP, denoted as (w,p), defines a contractive Markov

operator M , on the space of of probability measures M(X) equipped with the
Monge-Kantorovich metric dMK . The unique fixed point µ̄ = Mµ̄ is referred to as
the invariant measure of the N -map IFSP.

Here we consider the following inverse problem: Given a target measure µ, find
an IFSP (w,p) with invariant measure µ̄ sufficiently close to µ, i.e., dMK(µ, µ̄) < ε.
From Banach’s Theorem, the problem may converted into finding an IFSP with
Markov operator M that minimizes the collage error dMK(µ,Mµ).

Nevertheless, the determination of optimal wi and pi is still a formidable prob-
lem. It was simplified in [1] by employing a fixed, infinite set of maps wi satisfying
a refinement condition on (X, d). This problem was then translated into a moment
matching problem that becomes a quadratic programming (QP) problem in the pi.

In this paper we extend the method developed in [1] along two different direc-
tions. First, we search for a set of probabilities pi that not only minimizes the
collage error but also maximizes the entropy of the iterated function system. Sec-
ond, we include an extra term in the minimization process which takes into account
the sparsity of the set of probabilities.

In our new formulations, collage error minimization can be understood as a
multi-criteria problem: i.e., collage error, entropy and sparsity. We consider two
different methods of solution: (i) scalarization, which reduces the multi-criteria
program to a single-criteria program by combining all objective functions with dif-
ferent trade-off weights and (ii) goal programming, involving the minimization of the
distance between each objective function and its goal. Numerical examples show
how the two above methods work in practice.

[1] B.Forte and E.R.Vrscay, Solving the inverse problem for measures using iterated
function systems: a new approach, Adv. Appl. Prob., 27, 800-820 (1995).
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MINIMAX ESTIMATORS FOR NOISY COINS

Chris Ferrie1, Robin Blume-Kohout2
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(2) Los Alamos National Laboratory; robin@blumekohout.com

Abstract
Optimal estimation of a binomial parameter from count data – e.g., guessing a
coin’s bias p after observing n heads in N flips – has preoccupied probabilists from
Laplace to the present day. Oddly enough, little attention has been paid to the
equivalent problem for noisy count data. Noisy count data appears in many fields,
including particle physics, randomized response, and quantum information science.
We analyze the performance of point estimators for “noisy coins” over a wide range
of N (N = 2 . . . 104), with respect to Kullback-Leibler (relative entropy) loss. We
focus particularly on minimax estimators. In stark contrast to the well-studied
noiseless case, minimax estimators are counterintuitive and nonlinear, but have
substantially better worst-case behavior than linear estimators of the form p̂ =
(n+β)/(N+2β). However, we also show that the minimax criterion is deeply flawed
for noisy count data. Minimax estimators sacrifice tremendous accuracy at most
values of p in exchange for tiny improvements around “least favorable” biases. We
demonstrate nearly-minimax estimators with dramatically improved performance
at almost all values of p.
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Key Words: Minimax, Bayes Risk, relative entropy loss, Kullback-Leibler, least
favorable priors
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ESTIMATION AND MODEL SELECTION IN
DIRICHLET REGRESSION

A. Camargo
1
, J. M. Stern

1
, M. S. Lauretto

2

(1) Institute of Mathematics and Statistics, University of Sao Paulo

(2) School of Arts, Sciences and Humanities, University of Sao Paulo

andreuler@yahoo.com.br, marcelolauretto@usp.br

Abstract

Compositional data consist of vectors whose components are the proportions or

percentages of some whole. The peculiarity of this family is that their sum is con-

strained to be some constant (usually 1). Hence, the corresponding sample space

is the simplex, that is quite different from the real Euclidean space associated with

unconstrained data. Therefore, attempts to apply statistical methods for uncon-

strained data often lead to inappropriate inference. Some statistical models for

compositional data have been developed since the 70s, particularly for regression

analysis.

Here we focus on the Dirichlet Covariate Model, suggested by Campbel and Mosi-

mann (1987). In this model, one considers y = (y1, . . . , yD) to be a 1 × k positive

vector having Dirichlet distribution D(α1, . . . ,αD). In this approach, a Dirichlet re-

gression model is readily obtained by allowing the parameters of a Dirichlet distribu-

tion to change with a covariate. For a given covariate vector x = (x1, . . . , xC), each

parameter αj may be written as a positive-valued function λj(x) of the covariates x.

Thus, a different Dirichlet distribution is modeled for every value of the covariates,

resulting in a conditional Dirichlet distribution with y|x ∼ D(λ1(x) . . . λD(x)).

In this work, we introduce a new method for estimating the parameters of the

Dirichlet Covariate Model, considering λj(x) as polynomials. We also propose a

model selection approach based on the Full Bayesian Significance Test (Pereira and

Stern, 1999). Problems of interest are, for example, variable selection and choice of

polynomial order.

References:

[1] G.Campbell, J.Mosimann. Multivariate methods for proportional shape.

ASA Proceedings of the Section on Statistical Graphics, 10-17 (1987).

[2] R.H.Hijazi, R.W.Jernigan. Modelling Compositional Data Using Dirichlet

Regression Models. Journal of Applied Probability & Statistics 4, 77-91 (2009).

[3] C.A.B.Pereira, J.M.Stern. Evidence and Credibility: Full Bayesian Signifi-

cance Test for Precise Hypotheses. Entropy 1, 99-110 (1999).
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INFERENCE-BASED DESIGN OF FIR
FILTERS WITH SUM OF SIGNED
POWER-OF-TWO COEFFICIENTS

P. M. Goggans, C.-Y. Chan
University of Mississippi, Electrical Engineering Department

(goggans@olemiss.edu, cychan1@olemiss.edu)

Abstract
The Bayesian inference framework for design has been applied to design linear-
phase finite impulse-response (FIR) filters with continuous valued coefficients [1].
In the filter implementation, the continuous valued coefficients are represented by
floating or fixed point numbers. Here, we extend the inference-based approach to
the design of FIR filters with coefficients expressed as a sum of signed power-of-two
(SPoT) terms. The use of SPoT coefficients reduces the implementation cost and
power dissipation of the filter, because the multipliers that are used to implement a
filter with continuous valued coefficients are replaced by shifters and adders. These
advantages are achieved at the expense of a design process with higher complexity,
which arises as a result of quantization of filter coefficients into the SPoT space.

In the literature, the design of a FIR filter with SPoT coefficients is commonly
formulated as a non-linear optimization problem in a discrete space. The optimiza-
tion approach has a prominent drawback in that one or more design parameters
governing the complexity of a design such as the number of SPoT terms and filter
taps used, and the filter length are fixed in the design process. This predetermination
of design parameters is very likely to result in filter designs with design complexity
higher than required by the design specifications. In contrast, the inference frame-
work has the ability to incorporate all design parameters in a design process and to
design filters with design complexity appropriate to the design requirements.

The use of SPoT terms to represent the coefficients results in non-uniformly
quantized possible values for the coefficients. In addition, the representation of
a particular coefficient is not unique and can be achieved using a vast number
of combinations. This redundancy is undesirable and gives rise to a number of
difficulties in the inference-based design process. To overcome the problems resulting
from redundancy, we have devised and implemented a penalization scheme, which
is incorporated into the likelihood.

References:
[1] C.-Y. Chan and P. M. Goggans, Using Bayesian inference for linear phase

log FIR filter design, in Bayesian Inference and Maximum Entropy Methods in
Science and Engineering, P. M. Goggans and C. Y. Chan, Eds., Oxford, Mississippi:
American Institute of Physics, 2009, pp. 329 - 335.
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Bayesian Inference for Acoustic Impedance Boundaries
in Room-Acoustic Finite Difference Time-Domain

Modeling

Jonathan Botts, and Ning Xiang
Graduate Program in Architectural Acoustics,

Rensselaer Polytechnic Institute, Troy, New York
(bottsj@rpi.edu)

Abstract

In room acoustics, the finite difference time-domain approach is increasingly be-
ing applied to model wave propagation in spaces with complex geometries. For
realistic simulation, implementation of frequency-dependent, impedance boundary
conditions, is necessary. This paper will demonstrate that the modeling and imple-
mentation of acoustic impedance boundaries within the finite difference time-domain
approach represents tasks which can be solved by two levels of Bayesian inference.
The impedance function is expressed as a parametric model with coefficients of
finite order, and the order of the model is directly connected to the accuracy of
the calculation, computational expense, and memory requirements. The implicit
Occam’s razor for boundary impedance model selection, followed by coefficient esti-
mation within the Bayesian framework, can be applied for optimizing computational
expense and accuracy achieved in room-acoustic finite difference time-domain mod-
eling.

Key Words: Model selection, parameter estimations, room-acoustic modeling,
FDTD, acoustic impedance, boundary conditions
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Process-Conditioned Investing with Incomplete
Information using Maximum Causal Entropy

B. Ziebart
Carnegie Mellon University

bziebart@cs.cmu.edu

Abstract
Information theory and the principle of maximum entropy serve important roles
for making and quantifying growth rate optimal investment [2, 3, 1]. In this work,
we extend this line of research to settings where investment outcomes depend on
side information variables, X1:T , sequentially revealed from a known process, but
where the relationship between X and investment outcomes Y1:T , are only partially
known. Two measures from directed information theory—the causally conditioned
probability distribution, P (Y||X) =

�T
t=1 P (Yt|X1:t,Y1:t−1), and the causally con-

ditioned entropy, H(Y||X) = EP (Y,X)[− logP (Y||X)]—are relevant in this setting.
Namely, when the distribution of event outcome Yt (e.g., a horse race) in terms
of sequentially revealed side information variables x are known and outcomes pro-
vide odds o(yt|y1:t−1) given previous outcomes, the maximum expected investment
growth rate is EP (Y,X)[log o(Y)]−H(Y||X) [3].

More generally, the relationship between X and Y variables may not be com-
pletely understood. Instead, the distribution may be known (or assumed) to satisfy
sets of constraints, {fi(P (Y||X)) = 0} and {gj(P (Y||X)) ≤ 0}, for linear functions
fi and convex functions gj of the causally conditioned probability terms, P (y||x).
By extending the principle of maximum causal entropy [4] to maximize a relative
causal entropy that incorporates outcome odds, this work provides a worst-case in-
vestment growth rate guarantee for this setting. We present efficient algorithms for
obtaining the corresponding worst-case growth rate optimal investment allocation
using convex optimization techniques and dynamic programming.

References:
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ON THE NOTION OF FAIR GAMES AND
BERNOULLI’S CONCEPT OF MORAL

EXPECTATION

Arthur H. Baraov

Hewlett-Packard Company

Abstract

It is commonly believed that Daniel Bernoulli’s resolution of the St Petersburg
problem provides an estimate of the ’fair’ entrance fee for that game. This funda-
mental misunderstanding of Bernoulli’s treatment of the problem didn’t escape Ed-
win Jaynes’ attention: In one of the best known books on probability theory (Feller,
1950, p. 199), Daniel Bernoulli’s resolution of the famous St Petersburg paradox is
rejected without even being described, except to assure the reader that he ’tried in
vain to solve it by the concept of moral expectation’. ... Reading Feller, one finds
that he ’resolved’ the paradox merely by defining and analyzing a different game.

For asymmetrical games with two players, it can be quite difficult to come up
with a criterion of game fairness everyone finds satisfactory. However, in the case of
perfectly symmetrical games, there can be no doubt that such games are fair. Nev-
ertheless, as we demonstrate in this paper, Bernoulli’s approach to estimating the
’fair’ entrance fee can yield different results for different players even in cases where
asymmetry of the game is purely superficial. That shows clearly that the essence
of Bernoulli’s resolution of the St Petersburg paradox is not about calculating the
’fair’ entrance fee at all.

One of the principal objections to Bernoulli’s resolution of the St Petersburg
paradox is that of justification for the logarithmic assignment of utility: the choice
of the logarithm doesn’t seem to follow from first principles of probability theory.
Indeed, why the utility of amount of money, M, or the ’moral value’ as Bernoulli
called it, should be taken proportional to log(M)? Why the utility is not to be taken
proportional to (M − 1)1/3, or arctan(M − 1), which, after all, has an additional
advantage of being bounded? The choice of the logarithmic assignment of utility
appears as an ad-hoc device with all earmarks of such devices.

In this paper we show that Bernoulli’s result can be obtained without resorting
to the concept of moral expectation. Using the classical mathematical expectation
in combination with arguments dictated by common sense, we obtain a functional
equation for the entrance fee in the St Petersburg game. The solution of the equation
yields entrance fee as a function of the total fortune of the player, which is in
close agreement with that obtained by Bernoulli based on his concept of moral
expectation.
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RELATING DYNAMICAL COMPLEXITY TO QUANTUM 

ENTANGLEMENT VIA INFORMATION GEOMETRY AND 

MAXIMUM RELATIVE ENTROPY METHODS 
 

Sean Alan Ali1, Carlo Cafaro2, Dong-Hoon Kim3 and Stefano Mancini2 

 

(1):  Department of Arts and Sciences, Albany College of Pharmacy and Health Sciences,   
106 New Scotland Avenue, Albany, NY 12208, USA; 
(2): School of Science and Technology, Physics Division, University of Camerino, I-
62032 Camerino, Italy; 
(3): Institute for the Early Universe, Ewha Womans University, Seoul 120-750, South 
Korea. 

(e-mail: seanalanali@gmail.com, carlo.cafaro@unicam.it, carlocafaro2000@yahoo.it) 
 

Abstract 

 
Describing and understanding the essence of quantum entanglement and its connection to 
dynamical complexity is of great theoretical interest [G. Benenti and G. Casati, "How 
complex is quantum motion?", Phys. Rev E79, 025201 (2009)]. 
 
In the present work, using information geometry (Riemannian geometry applied to 
probability theory) and the Maximum relative entropy method we present an information 
geometric characterization of the quantum entanglement generated by an s-wave 
scattering event between two Gaussian wave-packets. 
 
We conjecture that the scattering induced quantum entanglement between two minimum 
uncertainty Gaussian wave packets is a macroscopic manifestation emerging from the 
interaction among specific underlying microscopic statistical structures. We describe the 
pre and post-collision quantum dynamical scenarios involved in the scattering process by 
means of uncorrelated and correlated Gaussian statistical models, respectively. 
 
This approach allows us to express the entanglement strength, quantified by the 
subsystem purity, in terms of scattering potential and incident particle energies. 
Furthermore, it enables definition of a quantity that serves to quantify the temporal 
duration over which the entanglement is active. Finally, our approach allows to uncover a 
quantitative relation between entanglement and information geometric complexity. 
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AN INFORMATION GEOMETRIC VIEWPOINT OF 

ALGORITHMS IN QUANTUM COMPUTING 

Carlo Cafaro1 and Stefano Mancini1 

(1): School of Science and Technology, Physics Division, University of Camerino, I-62032 
Camerino, Italy 
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Abstract 

 

    It is known that Grover's quantum search algorithm can be viewed as a geodesic path on the 

manifold of Hilbert-space rays where the notion of quantum distinguishability is quantified via the 

Fubini-Study metric, a gauge invariant metric on the projective Hilbert space [A. Miyake and M. 

Wadati, "Geometric strategy for the optimal quantum search", Phys. Rev. A64, 042317 (2001)]. 

    By observing that a parametric quantum wavefunction induces in a natural manner a parametric 

density operator and by considering its square root, we introduce the concept of Wigner-Yanase 

metric. Such metric is one among many versions of a so-called quantum Fisher information metric, 

a metric on manifolds of density operators for both finite and infinite dimensional quantum systems. 

    We show in an explicit manner that the Wigner-Yanase metric and the Fubini-Study metric differ 

by a factor of four when considering pure state models. Finally, interpreting the Fubini-Study metric 

as a quantum version of Fisher metric, we provide an information geometric characterization of 

Grover's algorithm as a geodesic (shortest length curve) in the parameter space characterizing the 

pure state model, the manifold of the parametric density operators of pure quantum states. 

Our analysis opens up new lines of investigation that may deserve some attention. For instance, it 

would be worth understanding the relation between computational complexity classes of quantum 

algorithms and the complexity of the quantum geodesic paths associated with them. 
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INSIGHTS INTO THE SOFTENING OF CHAOTIC STATISTICAL 

MODELS BY QUANTUM CONSIDERATIONS  

Carlo Cafaro1, Adom Giffin2, Cosmo Lupo1 and Stefano Mancini1 
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(2): Princeton Institute for the Science and Technology of Materials, Princeton University, 
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(e-mail: agiffin@princeton.edu, carlo.cafaro@unicam.it) 

 

Abstract 

A problem of great theoretical interest is understanding how to compare quantum and classical 

chaos and explaining the reason why the former is weaker than the latter [L. A. Caron et al., 

"Quantum chaos at finite temperature", Phys. Lett. A288, 145 (2001)]. Indeed, it is commonly 

conjectured  that the weakness of quantum chaos may be a consequence of the Heisenberg 

uncertainty relation. 

It is known that a quantum description of chaos is qualitatively different from a classical description 

and that the later cannot simply be considered an approximation of the former. Indeed, the only 

trace of quantum theory which a classical description may retain is the canonical Heisenberg’s  

uncertainty relation, namely a minimum spread of order !! in the 2n-dimensional phase space. 

Inspired by these considerations, we study the information geometry  of a Gaussian statistical model 

when an additional information constraint resembling the canonical minimum uncertainty relation is 

introduced. We show that the chaoticity of such modified Gaussian statistical model (quantum-like 

model), quantified by means of the Information Geometric Entropy [C. Cafaro and S. A. Ali, 

"Jacobi Fields on Statistical Manifolds of Negative Curvature", Physica D234, 70 (2007)] and the 

Jacobi vector field intensity, is indeed softened with respect to the chaoticity of the standard 

Gaussian statistical model (classical-like model). 

Our analysis provides evidence that the degree of chaoticity of statistical models is related to the 

existence of uncertainty relation-like information constraints. Our finding leads us to support the 

conjecture that quantum chaos is ultimately weaker than classical chaos because of Heisenberg’s 

uncertainty relation, the most important difference between classical and quantum physics. 
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Bayesian Analysis of Scale-Invariant Processes

V. Nieves1, J. Wang1, and R. L. Bras2

(1) University of California, Irvine, Irvine, California, USA.
(2) Georgia Institute of Technology, Atlanta, Georgia, USA.

(vnieves@uci.edu)

Abstract

We have demonstrated that the Maximum Entropy (ME) principle in the context
of Bayesian probability theory can be used to derive the probability distribution of
those processes characterized by its scaling properties including multiscaling mo-
ments and geometric mean. We started from a proof-of-concept case of a power-law
probability distribution, followed by the general case of multifractality aided by
the wavelet representation of the cascade model. The ME formalism leads to the
probability distribution of the multiscaling parameter and those of incremental mul-
tifractal processes at different scales [1,2]. Compared to other algorithms, the ME
method significantly reduces the computational cost. The ME distributions have
been evaluated against the empirical histograms derived from the drainage area of
a river network, soil moisture and topography. This analysis supports the assertion
that the ME principle is a universal and unified framework for modeling processes
governed by scale-invariant laws. More importantly, the ME theory opens new
possibilities of inferring information of multifractal processes beyond the scales of
observation.

References:
[1] V. Nieves et al. Phys. Rev. Lett. 105, 118701 (2010).
[2] V. Nieves et al. Proc. Natl. Acad. Sci. USA, submitted.

Key Words: Bayesian Statistics, Maximum Entropy, Scale-Invariant Laws, Multi-
fractality, Environmental Sciences.
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MAXIMUM PARTIAL ENTROPY PRINCIPLE

AND PARTIAL PROBABILITY-WEIGHTED

MOMENTS

J. Deng1, M.D. Pandey1, W.C. Xie1

(1) University of Waterloo, Canada
(E-mail: j7deng@uwaterloo.ca)

Abstract

Maximum entropy (MaxEnt) principle is usually used for estimating the probability
density function under specified moment constraints. The density function is then
integrated to obtain the cumulative distribution function, which needs to be inverted
to obtain a quantile corresponding to some specified probability. In such analysis,
consideration of higher order moments is important for accurate modelling of the
distribution tail. There are three drawbacks for this conventional methodology: (1)
Estimates of higher order (>2) moments from a small sample of data tend to be
highly biased; (2) It can merely cope with problems with complete or non-censored
samples; (3) Only probability weighted moments of integer orders have been utilized.
These difficulties inevitably induce bias and inaccuracy of the resultant quantile
estimates and therefore have been the main impediments to the application of the
MaxEnt Principle in extreme quantile estimation.

This paper attempts to overcome these problems and presents a distribution
free method for estimating the quantile function of a non-negative random variable
using the principle of maximum partial entropy subjected to constraints of the
partial probability weighted moments estimated from censored sample. The main
contributions include: (1) New concepts, i.e., partial entropy, fractional partial
probability weighted moments, and partial Kullback-Leibler measure are elegantly
defined; (2) The principle of maximum entropy is extended to maximum partial
entropy principle, which is defined on a finite interval; (3) New distribution free
quantile functions are derived. Numerical analyses are performed to assess the
accuracy of extreme value estimates computed from censored samples.

References: [1] M.D. Pandey. Struct. Saf. 22(1), 61-79 (2000).

Key Words: Partial entropy, Fractional partial probability-weighted moments,
Quantile function, Extreme value analysis
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PARSIMONEOUS PRIORS FOR REGRESSION

COEFFICIENTS
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Delft, The Netherlands

02-04-2011

Abstract

If one wishes to perform model selection for a set of competing regression models,

then the obligatory priors can truely be a nuissance. If the number of parameters

for the likelihood models differ, one is forced to ponder upon the most suitable

bounds of the non-informative priors of the unknown parameters. Since taking a

uniform prior with overly large bounds may severely punish the larger likelihood

models. How different the situation when we are faced with a problem of parameter

estimation. Taking a uniform non-informative prior one can let the bounds of this

prior even go to infinity and the parameter estimates will be none the less because

of it. Now why is it that a prior that has no discernible influence on our parameter

estimations should have such a profound impact on our model selection? And really,

should it? We will propose a prior that is in the spirit of Jaynes’ scrupulously fair

judge who, as by Jaynes’ own initial description,[1], is someone “who insists that

fairness in comparing models requires that each is delivering the best performance

of which it is capable, by giving each the best possible prior probability for its

parameters”.

References:

[1] E.T. Jaynes, Probability Theory; the logic of science, Jaynes, Cambridge Uni-

versity Press (2003).

Key Words: Bayesian Model Selection, Proper Uniform Priors, Regression Coeffi-

cients
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THE AIRCRAFT CARRIER PROBLEM

Arthur H. Baraov

Hewlett-Packard Company

Abstract

Congratulations, your name is Ernest J. King, and you are Chief of Naval Operations

during World War II! Today you have a decision to make: to build one large aircraft

carrier or two small ones. The total cost of building a large aircraft carrier is exactly

the same as for two small carriers. Aircraft carriers are needed to accomplish a

secret mission. The mission is either accomplished, or the carrier is destroyed by

the enemy. The probability to accomplish the mission with a large aircraft carrier is

two times higher than that with a small one. Small carriers operate independently

of each other: if one is destroyed, the other still can accomplish the mission, and

the risk of one small aircraft carrier to be destroyed is independent from the risk of

the other. What is your decision - to build one large or two small aircraft carriers?

Uncritical and formal application of probability theory to this decision making

problem leads to the following orthodox solution. Let p denote the probability to

accomplish the mission with the large carrier, then the corresponding probability for

the small one is p/2. Therefore the probability to accomplish the mission with two

small carriers ought to be 1− (1− p/2)2 = p− p2/4, i. e. building one large aircraft

carrier is preferable because it gives a better chance to accomplish the mission.

The above solution seems mathematically impeccable, nevertheless common

sense does not agree easily with reasonableness of such a decision. In this paper we

argue for the opposite decision: two small aircraft carriers are more likely to succeed

in accomplishing the mission. Our solution, which is based on a certain invariance

principle, clearly demonstrates the extra power theory of probability acquires when

interpreted as calculus of common sense and extension of logic.
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BAYESIAN ESTIMATION OF DYNAMIC
MATCHING FUNCTION FOR U-V ANALYSIS IN

JAPAN
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(2) Yamagata University, 1-4-12 Kojirakawa-machi

Yamagata 990-8560, Japan
(3) Research Organization of Information and Systems
4-3-13 Toranomon, Minatoku, Tokyo 105-0001, Japan

Abstract

In this paper we propose a Bayesian method for analyzing the unemployment
dynamics. To derive a Beveridge curve for U-V analysis, we introduce Bayesian
models based on a matching function for the number of unemployed workers and
the number of vacant jobs. In our framework, the efficiency of matching and the
elasticities are regarded as time varying parameters. In order to construct a flexible
model and obtain reasonable estimates in an under-determined estimation problem,
we treat the time varying parameters as random variables and introduce a set of
smoothness priors to them from the viewpoint of Bayesian approach. The model is
described in a state space model form, so the parameter estimation is carried out
using Kalman filter and the fixed interval smoothing. Thereby dynamic features
of the labor market can be captured accurately. Focusing on the Japanese labor
market for the period 1963-2010, as a practical application of the proposed Bayesian
approach, we attempt to decompose the unemployment rate into two components,
i.e., the cyclic and the structural components. Consequently, both of these compo-
nents in the unemployment rate seem to have upward trend, when we examine the
trends over the period 1963-2010.

Key Words: BAYESIAN ESTIMATION, BEVERIDGE CURVE, U-V ANALY-
SIS, MATCHING FUCTION, STATE SPACE MODEL, SMOOTHNESS PRIORS,
TIME VARYING PARAMETERS
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From Data To Constraints

S.Mukhopadhyay, E.Parzen, S.N.Lahiri
Texas A&M University, Department of Statistics
(Email: deep,eparzen,snlahiri@stat.tamu.edu)

Abstract

Jaynes’ Maximum Entropy (MaxEnt) inference starts with the assumption that we have
a set of known constraints over on the distribution. In statistical physics, we have a good
intuition about the conserved macroscopic variables. It should not be surprising that in
real world we have no idea which coordinate to use to specify the state of the system. In
other words we only observe empirical data and we have to take decision on the constraints
from the data. In an effort to circumvent this limitation, we propose a nonparametric
quantile based method to extract relevant and significant facts (sufficient statistics) for
the maximum entropy exponential model.

Invariably one of the primary requirements to apply MaxEnt principle : (i) How data
can deliver proper constraints (statistics) ? (ii) How many constraints to use ?. While the
second problem could be linked with the “model selection/parameter estimation problem,
the first problem does not have any immediate solution. If we answer this two questions
then it is straight forward to apply MaxEnt principle and derive the whole uncertainty
distribution of the parameters of interest. The methods set forth in this paper, tailored
particularly to address this two question for information processing. This will help the
maximum entropy to go beyond the conventional ”exploratory phase” and become a objec-
tive complete inferential paradigm for practitioners. Lastly, we illustrate our method with
numerical data to demonstrate a unified framework for efficient representation, processing
and data analysis.

Main tools:

• Quantile function, quantile density score function;

• Mid-rank transformation of the raw data and Legendre transformation;

• Our novel score function unify the continuous and discrete data type;

References:
[1] Parzen, E. (1979). Nonparametric statistical data modeling. Journal of the Amer-

ican Statistical Association, 74, 105131.
[2] Parzen, E. (2004). Quantile probability and statistical data modeling. Statistical

Scienc, 19, 652662.
[3] Uffink, J. (1996) The constraint rule of the maximum entropy principle.Studies In

History and Philosophy of Modern Physics, 27, 47-79.

Key Words: Maximum entropy, mid-rank transformations, exponential model, quantile
function
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Application of Bayesian Non-Negative Matrix
Factorization to Seismic Footstep Signals Separation

Asif Mehmood, Raju Damarla and James Sabatier
US Army Research Laboratory
(asif.mehmood1@us.army.mil)

Abstract

Systems employing seismic footstep detection are an important additional layer to
perimeter protection and other security systems for numerous applications such as
homeland security. This paper reports Bayesian treatment of non-negative matrix
factorization (NMF) based on a normal likelihood, and derives an efficient Gibbs
sampler to approximate the posterior density of the NMF factors. We discuss how
the Gibbs sampler can be used for model selection by estimating the marginal likeli-
hood, and compare with the Bayesian information criterion. NMF techniques have
become widely used in audio analysis and source separation. They are typically used
on a magnitude spectrogram of a signal, which means that the signal is presented
as a sum of components, each having a fixed spectrum and time-varying gain. The
main benefit of the non-negative spectrogram factorization techniques is their ability
to decompose a complex signal automatically into objects which have a meaningful
interpretation. In this paper, a Bayesian based NMF algorithm is developed and
implemented on humans and horses footstep seismic data, and results are presented
and compared with traditional NMF techniques.

References:
[1] M.N. Schmidt, O. Winther, and L. Hansen, Bayesian non-negative matrix

factorization, International Conference on Independent Component Analysis and
Signal Separation, (2009).

[2] Knuth K.H. 1998. Bayesian source separation and localization. In: A.
Mohammad-Djafari (ed.), SPIE’98 Proceedings: Bayesian Inference for Inverse Prob-
lems, San Diego, July 1998, pp. 147-158.

[3] J. Sabatier, A. Ekimov, A review of human signatures in urban environment
using seismic and acoustic methods, IEEE Conference on Technologies for Homeland
Security, (2008).

Key Words: Bayesian Inference, Non-negative Matrix Factorization, Footstep de-
tection, seismic signals
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NEUTRON SPECTROMETRY AT HIGH-ENERGY
ACCELERATOR FACILITIES: A BAYESIAN
APPROACH USING ENTROPIC PRIORS

Marcel Reginatto
Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

marcel.reginatto@ptb.de

Abstract

Radiation dosimetry at high-energy accelerator facilities is a difficult task due to
the complexity of the radiation fields. The dominant radiation outside accelerator
shielding is usually due to neutrons, and to estimate dose quantities of interest it is
necessary to measure the neutron energy spectrum. Extended-range Bonner sphere
spectrometers are widely used for this purpose; however, they typically provide a
very limited amount of information and have poor resolving power [1]. The data
analysis requires solving an inverse problem which may be handled using Bayesian
parameter estimation or maximum entropy deconvolution [2].

Since the estimation of uncertainties is very important, it is desirable to analyze
the data using a parameterized model of the spectrum and Bayesian parameter
estimation [2]. This approach, however, has the shortcoming that the space of
solutions is limited by the model, which may be too simplistic to account for all the
relevant structure that may be present in the neutron energy spectrum. Therefore,
one would like to allow for departures from the functional form of the model.

To achieve this, the approach presented in Refs. [1,2] has been extended to allow
for an entropic prior. The Labesgue measure that is necessary to define the entropy
is written in the form of a discretized energy spectrum {mj} = {mj({λa})} which
depends on a set of parameters {λa}, and the entropic prior for the discretized
energy spectrum {aj} is defined in the standard way; i.e., prob({aj}|{λa},α, I) ∝
exp(αS({aj}, {mj})) where S is the Skilling expression for the entropy and α a
constant. Since ∆ak ≡ ak − mk is typically small, |∆ak| $ mk, it is possible to
introduce the approximation log(ak/mk) ≈ ∆ak/mk in the expression for S; this
has advantages for the computation. The calculation is carried out using Bayesian
parameter estimation, therefore the parameter α is handled using marginalization.

The method has been tested using simulated data that model measurements
made in neutron fields behind shielding at high-energy accelerators.

References:
[1] M. Reginatto et al, Nuclear Technology 168, 328332, (2009).
[2] M. Reginatto, Radiation Measurements, 44, 692699, (2009).

Key Words: Bonner sphere spectrometry, Bayesian methods, entropic priors
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A NOTE ON ANTIDATA

N. Kaufmann
University at Albany, Albany, NY

tk725472@albany.edu

Abstract

We explore some cases of the antidata phenomenon (see [1]). This is a something
seen in Bayesian inference, namely, when an entropic 1-prior encodes an estimate of
the unknown distribution parameters (for example the parameters of a Gaussian),
this estimate sometimes reduces the degrees of freedom in the posterior pdf of the
parameters. This is in contrast to the (natural conjugate) 0-prior, where typically
the estimate with weight α acts like another α data points added to the actual
n data samples, thus increasing the degrees of freedom in the posterior by α and
making the 0-posterior more informative. We ask

1. When does the antidata occur?

2. When is it maximized?

3. When is antidata desirable? When should we use which prior?

We correct some previously published formulas for the entropic 1-prior. We produce
graphics that allow visualisation of the relevant priors and posteriors.

References: [1] Rodŕıguez, Carlos C. (2006), Antidata, http://omega.albany.
edu:8008. Also published in AIP Conference Proceedings, Vol. 872, pp. 161
to 178 (“MaxEnt 2006”), editted by Ali Mohammad Djafari; available at http:

//proceedings.aip.org.

Key Words: Antidata, Entropic Prior, Empirical Bayes, Bayesian Inference.
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MAXENT ALTERNATIVES TO PEARSON

FAMILY DISTRIBUTIONS

Barrie Stokes1

(1) Clinical Pharmacology University of Newcastle Australia
(barrie.stokes@newcastle.edu.au)

Abstract

In the spirit of ET Jaynes’ Maximum Entropy Principle, a prior distribution con-
forming, say, to known moments (e.g., mean, standard deviation, skewness, kur-
tosis) should have the maximum entropy of all such distributions. At a previous
MaxEnt conference a method of obtaining MaxEnt univariate distributions under a
variety of constraints was presented1. The Mathematica function Interpolation,
normally used with numerical data, can also operate with ”semi-symbolic” data,
and Lagrange Multiplier equations were solved for a set of symbolic ordinates and
numerical abscissae describing the required MaxEnt probability density function.

Here we apply a developed version of this approach to finding MaxEnt distribu-
tions having prescribed β1 (skewness squared) and β2 (kurtosis) values, and com-
pare the entropies of the MaxEnt distributions to the entropies of the corresponding
Pearson family distributions having the same β1 and β2.

References:
[1] B. Stokes. Continuous MaxEnt Distribution in Mathematica: a ”Parameter-

Free” Approach. MaxEnt 2009, Oxford, Mississippi (2009).

Key Words: MaxEnt Distributions, Pearson Family Distributions, Mathematica
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A SOFTWARE PACKAGE FOR NESTED

SAMPLING.

Do Kester

SRON Netherlands Institute for Space Research,

Landleven 12, 9747 AD Groningen.

email do@sron.nl

Abstract

We present a software implementation of the Nested Sampling algorithm to calcu-
late the evidence the data carries with respect to a model. Simultaneously samples
are obtained from the posterior distribution which can be used to calculate infer-
ences from the data given the model. The implementation is largely abstracted
from specific prior distributions, likelihood functions, randomization engines and
models. Models can be parametrized or not, static or dynamic. A large selection
of predefined models is present in the package. Prior distributions on the param-
eters, likelihoods and engines are pluggable. As standard likelihoods distributions
are provided for Gaussian errors, for Laplace errors, for Cauchy errors and for Pois-
son errors. We have uniform prior distributions, Jeffreys priors and exponential
priors. The package contains 6 randomization engines, including a Galilean engine
and a birth/death engine for dynamic models. The package is open to other models,
priors, likelihoods and engines if need arises.

The nested sampling package is part of ESA’s Herschel Interactive Processing
Environment (HIPE), a data analysis system which is publicly available under the
GNU Lesser General Public License.

Demo’s of the package will be part of this poster.

Key Words: Nested Sampling, software
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THE FULL BAYESIAN SIGNIFICANCE TEST
FOR SYMMETRY IN CONTINGENCY TABLES

G.G.Bernardo
1
, M.S.Lauretto

2
, J.M.Stern

1

(1) Institute of Mathematics and Statistics, University of Sao Paulo

(2) School of Arts, Sciences and Humanities, University of Sao Paulo

gustavo.bernardo@gmail.com, marcelolauretto@usp.br, jstern@ime.usp.br

Abstract

The problem of symmetry hypothesis is fundamental in statistics analysis, where

the researcher must assess the existence of a certain symmetry condition. In several

applications, the state of compliance, normality or health is characterized by the

existence of symmetries. In these situations, the lack of symmetry is an indicator of

non-compliance, abnormality or illness. The early detection of the lack of symmetry

can frequently allow the repair, maintenance or simplified treatment, thus avoiding

much more expensive and complex late procedures. This kind of early detection

may be helpful in avoiding severe consequences, e.g the breaking of an important

part in a machine during its operation. The test for symmetry in contingency

tables constitutes a broad and important subarea in Statistics, and several methods

have been devised for this problem. In this work we propose the Full Bayesian

Significance Test (FBST) for the problems of symmetry and point-symmetry in

contingency tables. FBST is an intuitive Bayesian approach which does not assign

positive probabilities to zero measure sets when testing sharp hypotheses. Numerical

experiments comparing FBST performance to power-divergence statistics suggest

that FBST is a good alternative for problems concerning tests for symmetry in

contingency tables.

References:

[1] N.A.C.Cressie, T.R.C.Read (1984). Multinomial Goodness-of-Fit Tests. J R

Stat Soc B 46(3), 440-464.

[2] C.A.B.Pereira, J.M.Stern (1999). Evidence and Credibility: Full Bayesian

Significance Test for Precise Hypotheses. Entropy, 1, 99–110.

[3] C.A.P.Pereira, J.M.Stern, S.Wechsler (2008). Can a Significance Test be

Genuinely Bayesian? Bayesian Analysis, 3, 1, 79–100.

[4] T.R.C.Read, N.A.C.Cressie (1988). Goodness-of-Fit Statistics for Discrete

Multivariate Data. NY: Springer-Verlag.

Key Words: Contingency tables, FBST, Power divergence, Significance Tests,

Symmetry.
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RELIABILITY ANALYSIS IN SERIES SYSTEMS:

AN EMPIRICAL COMPARISON BETWEEN

BAYESIAN AND CLASSICAL ESTIMATORS

A.S.Rodrigues
1
, T.C.M.Dias

1
M.S.Lauretto

2
, A.P.Campos

1

(1) Statistics Deparment, Federal University of Sao Carlos

(2) School of Arts, Sciences and Humanities, University of Sao Paulo

polpo@ufscar.br, marcelolauretto@usp.br

April 2011

Abstract

In Reliability Analysis, coherent systems represent a most important struture. In

many situations it is found that these systems are arranged in a series configuration,

meaning that the system’s failure is determined by the first component’s failure. A

problem of fundamental importance is to estimate the survival function parameters

for each component, since this allow to establish policies and specifications that

ensure adequate balances among system’s reliability and costs. However, reliability

data for series systems are usually censured, in the sense that one knowns the system

failure time and the responsible component, but it is not known the survival time of

the remaining (good) components. In this work, we present a brief revision on reli-

ability analysis in series systems, and compare the performances of three estimation

methods: Kaplan-Meier, maximum likelihood and Bayesian estimators. The results

of simulation study suggest the maximum likelihood and Bayesian estimators as

equivalent, and the Kaplan-Meier performing worse in most cases. References:

[1] E.L.Kaplan, P.Meier. Nonparametric estimation from incomplete observa-

tions. Journal of the American Statistical Association 53, 457-481, 1958.

[2] M.S.Lauretto, S.R.Faria Jr, B.B.Pereira, C.A.B.Pereira, J.M.Stern. The

problem of separate hypotheses via mixture models. AIP Conference Proceedings

954, 268-275, 2007.

[3] A.V.Peterson Jr. Expressing the Kaplan-Meier Estimator as a Function of

Empirical Subsurvival Functions. Journal of the American Statistical Association

72(360), 854-858, 1977.

[4] A.Polpo, M.Coque-Jr, C.A.B.Pereira. Statistical Analysis for Weibull Distri-

butions in Presence of Right and Left Censoring. The Proceedings of 2009 8th In-

ternational Conference on Reliability, Maintainability and Safety, 1, 219-223, 2009.

Key Words: Reliability analysis, series systems, competitive risks, censured relia-

bility data
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A HIERARCHICAL BAYESIAN METHOD FOR SYNTHETIC
APERTURE RADAR IMAGE RECONSTRUCTION

S. Zhu1,2, A. Mohammad-Djafari1, X. Li2, H.Q. Wang2

(1) Laboratoire des Signaux et Systèmes (L2S),
UMR 8506 CNRS-SUPELEC-UPS, 3 Rue Joliot Curie , 91192 Gif-Sur-Yvette, France

(2) Research Institute of Space Electronic Information,
School of Electronic Science and Engineering, NUDT, Changsha 410073, Hunan, China

(Email: {sha.zhu}{djafari}@lss.supelec.fr, lixiangnudt@gmail.com, oliverwhq@tom.com )

Abstract

Synthetic Aperture Radar (SAR) imaging involves an ill-posed inverse problem of recon-
structing an image of the unknown scene (target) from partial and truncated information
of its Fourier Transform (FT). Conventional deterministic SAR imaging methods based on
Inverse Fourier Transform (IFT) are limited by a fundamental assumption that the unmea-
sured data in the Fourier domain is treated as zero. Indeed, these methods do not account
for the prior knowledge of the scene.

Bayesian methods with appropriately chosen priors emerge as promising alternatives. In
this paper we develop a Hierarchial Bayesian method for SAR image reconstruction with a
generalized Total Variation (TV) prior. We adopt a coordinate-descent optimization method
for the MAP estimation. Compared to existing quadratic constraints (equivalent to a Gaus-
sian prior) the proposed method with the TV prior has capability of enhancing the region
smoothness and preserving the edges between regions in the reconstructed SAR image. In
addition, the Bayesian approach allows the adaptive estimation of the hyperparameters (reg-
ularization parameters) compared with the classical deterministic regularization method.

We will also show the relative performances of the proposed method, first on simulated
data limiting ourselves on the FT model, then on a more complex forward model going from
the scene to the measured data, and finally, on the real laboratory experimental data.

References:

1. M. Cetin and W.C. Karl, ”Feature-enhanced synthetic aperture radar image formation
based on nonquadratic regularization,” IEEE Trans. Image Processing, vol.10, no.4,
pp.623-631, 2001.

2. S.D. Babacan, R. Molina, and A.K. Katsaggelos, ”Parameter estimation in TV image
restoration using variational distribution approximation,” IEEE Trans. Image Process-
ing, vol.17, no.3, pp.326-339, 2008.

3. T. Chan, S. Esedoglu, F. Park, and A. Yip, ”Recent developments in total variation
image restoration,” in Mathematical Models of Computer Vision, New York: Springer-
Verlag, 2005.

4. N. Bali and A. Mohammad-Djafari, ”Hierarchical Markovian Models for Joint Classifi-
cation, Segmentation and Data Reduction of Hyperspectral Images,” In Proc. ESANN,
Belgium, Sep. 2006

Key Words: Bayesian inference, Image Reconstruction, Synthetic Aperture Radar, Total
Variation, Computed Imaging
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Information geometric foundations of quantum theory

R.P. Kostecki

Institute for Theoretical Physics, University of Warsaw,

Hoza 69, 00-681 Warszawa, Poland

Abstract

We present a new approach to the mathematical and conceptual foundations of
quantum theory, grounded in information theoretic principles. Quantum theory
is formulated in a new way, without any appeal neither to linear Hilbert space
formalism, nor to subjective or frequentist interpretations of probability. On the
mathematical level, it is based on the non-linear extension of C∗-algebraic frame-
work using quantum information geometry in the role of kinematics and constrained
maximum relative entropy principle in the role of dynamics. On the conceptual
level, it is based on information theoretic reformulation of the bayesian approach
equipped with a requirement of intersubjective coherence. Apart from resolving
the measurement problem and other standard conceptual problems, it provides a
novel method of construction of dynamical (interacting) quantum theoretic models
without recourse to quantisation procedures, specifying the unique kinematics and
unique dynamics directly from a given experimental information. We show that in
particular cases our approach recovers lorentzian space-time, Hilbert space quantum
theory, and maximum entropy non-equilibrium statistical mechanics.
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SUPPER-RESOLUTION IMAGE FROM A

SEQUENCE OF LOW RESOLUTION IMAGES
BASED ON IMPROVED

GUASSS-MARKOV-POTTS MODEL

N. CHU1,2, A. MOHAMMAD-DJAFARI1, N.GAC1

(1) Laboratoire des signaux et systmes (L2S)
UMR 8506 CNRS-SUPELEC-UPS, 3 rue Joliot-Curie, 91192, France

(2) Supported by China Scholarship Council (CSC)
(Email: {Ning.CHU}{djafari}{nicolas.gac}@lss.supelec.fr)

Abstract

The restoration of super resolution (SR) image from a sequence of low resolution
(LR) images can be mainly considered in three steps: motion estimation, point
spread function (PSF) estimation, as well as high resolution (HR) image restora-
tion. Typical conventional methods[1] treated this problem in a serial process.
However, the estimating errors of motions and PSF can accumulate and seriously
affect the SR image restoration. Gauss-Markov-Potts model used in [2] can work
much better. It applies the a prior of segmentations or contours in the HR image,
which can greatly increase the redundant information for restoration. However, this
method needs fix the number of segmentation, which can not adaptively achieve the
optimal estimations. In this paper, we firstly apply the Bayesian approach to solve
blind deconvolution by adding the proper a priors for both symmetric and some ir-
regular PSF. Then we improve the phase correlation function[2] by accelerating the
estimations of the sub-pixel displacements, the arbitrary rotations and zoom. These
estimated parameters and PSF can better initialise the SR image restoration, which
can both accelerate the iteration and obtain more proper estimations. Finally we
improve the model of Gauss-Markov-Potts[2][3] by adding adaptive segmentation
variable in order to estimate simultaneously the movements and PSF, as well as
reconstruct the HR images and well preserve the segmentation and contour of SR
image. Our method is tested and compared to other approaches in both simulations
and practical experiments.

References:
[1] G.Roch. and F.Cham. IEEE Trans. Image Processing, Vol.15, no.11,(2006).
[2] F.Humb. and A.Djaf. EURASIP. Applied Signal Processing, ID 36971,(2006).
[3] A.Djaf. Computer Journal. vol.doi:10,1093/comjnl/bxn005, (2008).

Key Words: Super Resolution, Bayesian approach, sub-pixel motion estimation,
blind deconvolution, Gauss-Markov-Potts model
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MOMENTUM AND THE UNCERTAINTY 
RELATION IN THE ENTROPIC APPROACH 

TO QUANTUM THEORY 
 

Shahid Nawaz and Ariel Caticha 
Department of Physics, University at Albany – SUNY 

Albany, NY 12222, USA  
(e-mail: snafridi@gmail.com, ariel@albany.edu) 

 
Abstract 

In the Entropic Dynamics (ED) framework quantum theory is derived as an application of 
the method of maximum entropy. (We are trying to do for quantum mechanics what Jaynes 
did for statistical mechanics.) The basic assumption is that in addition to the particles of 
interest the world contains other “extra” variables whose entropy S depends on the positions x 
of the particles, S = S(x). The Schrödinger equation follows from their coupled non-
dissipative dynamics: the entropy S(x) drives the dynamics of the particles x while they in 
their turn determine the evolution of S(x). An important feature is that the phase of the wave 
function (and not just its magnitude) receives a statistical interpretation: the phase keeps track 
of the entropy S(x) of those extra variables. 

Entropic Dynamics differs from other information-based approaches to quantum theory in 
that the position observable assumes a privileged role: the particles have well-defined, albeit 
unknown, positions. This opens the possibility of explaining all other observables in purely 
informational terms. In this paper our specific goal is to discuss momentum and its 
corresponding uncertainty principle. 

Since particles follow Brownian trajectories that are continuous but non differentiable it is 
not possible to assign an instantaneous momentum to the particles. Nevertheless, four 
different notions of momentum can be usefully introduced. They are not associated to the 
particles but rather to their probability distributions: (1) the current momentum is associated to 
the velocity with which probabilities flow; (2) the drift momentum reflects flow along the 
entropy gradient; (3) the osmotic momentum is associated to the velocity with which 
probabilities diffuse; and (4) the familiar quantum momentum is the generator of infinitesimal 
translations. We find relations among these four momenta: The expectation of the quantum 
momentum coincides with the expectations of the drift momentum and of the current 
momentum. The uncertainty in quantum momentum is the uncertainty in osmotic momentum 
and this leads to the Heisenberg uncertainty relation.  

The main conclusion is that momentum is a statistical concept. Particles have a position 
but they do not have a momentum. In ED the momenta are not properties of the particles; they 
are properties of the probability distributions.  
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From Cox to Emergent Geometry

Newshaw Bahreyni1, Kevin H. Knuth1,2

(1) Department of Physics, University at Albany, Albany NY USA
(2) Department of Informatics, University at Albany, Albany NY USA

April 18, 2011

Abstract

Knuth has demonstrated that Cox’s method of generalizing Boolean algebra to the
probability calculus can be extended to distributive algebras and applied to lattices
in general [1][2]. More recently Goyal, Knuth and Skilling showed that Cox’s ideas
can be used to derive Feynman’s complex path integral formulation of quantum
mechanics [3]. The fundamental concept behind these derivations is based on the
quantification of algebraic structures [5], and it is the order-theoretic structure of the
underlying algebra that constrains any quantification leading to sets of constraint
equations, which we view as laws.

We have taken these ideas further and apply them to partially ordered sets.
In our previous paper [4] we showed how applying this quantification method to
causally-ordered sets of events results in the scalar being expressed in a Minkowsian
form. We also showed how changing the basis from one set of chains into another,
under certain conditions, leads to generalized Lorentz transformations for pairs.

We now use the same technique to demonstrate that geometric concepts can
be derived from order-theoretic concepts. We show how chains in a poset can be
used to define points and line segments, and that quantification of the poset leads
directly to the Pythagorean theorem as well as the law of cosines and the law of
sines, angles and rotations. Thus we show that geometry itself is not fundamental,
but rather emergent, through the quantification of a partially ordered set.

References:
[1] Knuth K.H. 2003. Deriving laws from ordering relations. MaxEnt 2003,

204-235.
[2] Knuth K.H. 2009. Measuring on lattices. MaxEnt2009, 132-144.
[3] Goyal P., Knuth K.H., Skilling J. 2010. Why quantum theory is complex,

Phys. Rev. A 81, 022109. arXiv:0907.0909v3 [quant-ph]
[4] Knuth K.H. 2010. Information physics: The new frontier. MaxEnt 2010,

3-19. arXiv:1009.5161v1 [math-ph]
[5] Knuth K.H., Bahreyni N. 2010. The order-theoretic origin of special relativ-

ity. 115-121.

Key Words: information, partially ordered set, relativity, valuation, geometry

Tuesday Poster



New copulas obtained by maximizing

Tsallis or Rényi Entropies

Doriano-Boris Pougaza and Ali Mohammad-Djafari

Laboratoire des Signaux et Systèmes
UMR 8506 (CNRS-SUPELEC-UNIV PARIS SUD 11)

Plateau de Moulon, 3 rue Joliot Curie,
91192 Gif-sur-Yvette Cedex, France

Abstract

Sklar [1] introduced the notion of copula and solved in this way the problem studied by
Fréchet [2] and many other authors on the determination of a joint distribution function when
the one dimensional marginal cumulative distributions are prescribed. The same problem
arises also in the context of image (the internal density distribution of some physical or
biological quantity) reconstruction in X-ray computed tomography when only two orthogonal
projections are given. We consider those two previous problems which are the same problem
with the restriction that the distributions has bounded support and maximizes the Tsallis-
Havrda-Charvát’s entropy [3][4] or the Rényi’s entropy [5] by rescaling. We focus on the case
that the entropy index is equal to 2. We give a theorem and its corollary using the well-
known uniform transformation yielding to a genuine method for constructing new families
of copulas. We give the expression of some dependence concepts and then provide many
examples.

Keywords: Copula, Entropy, Joint density estimation, Shannon, Rényi and Tsallis.
PACS: 02.30.Gp,02.50.Cw, 02.50.Sk
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Porous Material Parameter Estimation: A Bayesian
Approach

Cameron Fackler, Eric Dieckman, and Ning Xiang
Graduate Program in Architectural Acoustics,

Rensselaer Polytechnic Institute, Troy, New York
(facklc@rpi.edu)

Abstract

A Bayesian approach to estimating the physical parameters of rigid-frame porous
materials through measurements of the acoustic impedance of such materials is
presented. Porous materials are widely used as sound absorbers in many indus-
tries. Modeling the effects of porous absorbers and making optimal use of porous
absorbent materials requires knowledge of the physical parameters characterizing
such materials: porosity, tortuosity, and flow resistivity. For many materials, direct
measurement of these parameters requires time-consuming or highly sensitive proce-
dures. Based on some existing models for the characteristic impedance of a porous
material in terms of the physical material parameters, Bayesian parameter estima-
tion is used to estimate the physical parameters of a material from a measurement
of its complex acoustic impedance. In addition to estimation of the values of the
physical parameters, Bayesian analysis provides information on the uncertainties
and interdependence of the parameters.

Key Words: Bayesian parameter estimation, porous materials, acoustic impedance
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MAXIMUM ENTROPY PRODUCTION IN

DAISYWORLD MODELS

H.A. Maunu
1
, K.H. Knuth

1,2

(1) University At Albany (SUNY), Department of Physics

(2) University At Albany (SUNY), Department of Informatics

(Email: Haley.Maunu@gmail.com, hm535264@albany.edu)

Abstract

Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that

illustrates how life can influence a planet’s climate [1]. These models typically

involve modeling a planetary surface on which black and white daisies can grow thus

influencing the local surface albedo and therefore also the temperature distribution.

Since then, variations of daisyworld have been applied to study problems ranging

from ecological systems to global climate. Much of the interest in daisyworld models

is due to the fact that they enable one to study self-regulating systems. These models

are nonlinear, and as such they exhibit sensitive dependence on initial conditions,

and depending on the specifics of the model they can also exhibit feedback loops,

oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in

nature in that they rely on heat flux and temperature gradients. However, what

is not well-known is whether, or even why, a daisyworld model might settle into

a maximum entropy production (MEP) state. With the aim to better understand

these systems, we will discuss what is known about the role of MEP in daisyworld

models.

References:

[1] A.J. Watson and J.E. Lovelock, Tellus 35B, 284-289 (1983).

Key Words: Daisyworld, Maximum Entropy Production
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Parameter Estimation of Magnetic Resonance Spectra
via a Statistical Mechanics Approach

Keith A. Earle

Physics Department, University at Albany (SUNY)

1400 Washington Ave, Albany NY 12222

kearle@albany.edu, http://earlelab.rit.albany.edu

Abstract

In this work, I develop the connections between parameter fitting and statistical
mechanics using the maxent principle of Jaynes. The approach described here leads
to an entropy that is extensive in the number of measurements in the average. In
addition, I show how to combine measurements from different experiments in an
unbiased way in order to maximize the entropy of simultaneous parameter fitting.
A pleasing physical picture emerges that interprets fit parameters as generalized
coordinates, from which the conjugate forces may be derived via the system partition
function. From this perspective, the parameter fitting problem may be interpreted
as a process where the system (spectrum) does work against internal stresses (non-
optimum model parameters) to achieve a state of minimum free energy/maximum
entropy. As an example of the utility of the methods discussed here, this approach
will be applied to a detailed analysis of a mixture model that arises in the analysis
of multifrequency electron spin resonance spectra.

Key Words: Maximum Entropy, Parameter Optimization, Statistical Physics
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Soft partitioning in networks via

Bayesian Nonnegative Matrix Factorization

I. Psorakis
1,2

, S. Roberts
1
, M. Ebden

1
, B. Sheldon

2

(1) Department of Engineering Science, University of Oxford

(2) Department of Zoology, University of Oxford

(mebden@robots.ox.ac.uk)

Abstract

In this work we present an approach to community detection that utilizes a Bayesian non-

negative matrix factorization model to extract overlapping modules from a network.
1

The

scheme has the advantage of soft-partitioning solutions, assignment of node participation

scores to modules, and an intuitive foundation. We present the performance of the method

against benchmark problems and compare it to other algorithms for community detection.

K N

hkj

wik

βk

a

b

vij

Above is our assumed generative graphical model. The observed variable vij denotes the

nonnegative count of interactions between two individuals i, j in a weighted undirected

network with adjacency matrix V ∈ RN×N
+ , which we factorize as V = WH. In the

community detection context, we assume that there are a number K of ‘hidden’ classes of

nodes in the network that affect vij . Thus we can define allocations of nodes to communities

as latent (unobserved) variables that allow us to explain the increased interaction density in

certain regions of the network: the more two individuals interact, the more likely they are

to belong to the same communities, and vice versa. The components W and H have scale

hyperparameters βk, and fixed hyper-hyperparameters a, b.

References:

[1] I. Psorakis, S.J. Roberts, M. Ebden, and B. Sheldon. Overlapping Community

Detection using Bayesian Nonnegative Matrix Factorization, Phys. Rev. E 2011 (to appear).

Key Words: graphs, nonnegative matrix factorization, community detection
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