COMPUTING BAYES IN BIG SPACES

John Skilling
Maximum Entropy Data Consultants Ltd, Kenmare, Ireland
(skilling@eircom.net)

Abstract

The traditional aim of Bayesian computation has been to compute probability dis-
tributions (as a set of samples) with accuracy

&(log Evidence) < O(1)

sufficient to enable models to be ranked whenever the Bayes factors are O(1) or more.
In large-scale problems, this ideal is increasingly unattainable except at prohibitive
cost. Practicality dictates that computing cost should grow with size only linearly,
or not much more. In turn, this dictates compromise with precision.

Statistical mechanics offers an analogy. Here, the number of degrees of freedom
is huge, of the order of Avogadro’s number (N ~ 10%*). Entropy S = log € is a linear
(“extensive”) variable, so that a thermodynamic system with N degrees of freedom
has entropy S = O(N). Fluctuations tend to be O(N'/?), so that measuring to
precision AS = O(1) would be meaningless. It would also be impossible in practice
to attain a precision of 1 part in 10%*. Despite this, statistical mechanics is a
productive discipline.

In Bayesian calculus, the controlling variable which corresponds to degeneracy
Q) is the evidence Z, and the extensive form corresponding to entropy is log Z. For
most purposes, when comparing models, the only differences of log Z that really
matter are large,

A(log Evidence) = O(N)

Any difference less than N'/2 tends to reflect the particular realisation of noise in the
data rather than an important difference between the models, so that computation
to the traditional O(1) accuracy would be largely meaningless. It may also be
impractically expensive in practice. Despite this, we require Bayesian computation
to be a productive methodology, even in large spaces.

On encountering statistical mechanics, most students have a sense of intellectual
vertigo at the enormous numbers involved with 2 until they learn to think loga-
rithmically in terms of entropy S. A similar adjustment of mindset is needed for
Bayesian computation whenever N > 1.

I will argue that nested sampling is the natural algorithm for the exploration and
quantification of large spaces. Gradient information, where available, can be used.
There is also a rather unexpected role for curvature, which promises a distinctive
new avenue of research.



